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This paper considers the problem of modeling a firm’s expected return as
a nonlinear function of its observable characteristics. We investigate whether
theoretically-motivated monotonicity constraints on characteristics and non-
stationarity of the conditional expectation function provide statistical and
economic benefit. We present an interpretable model that has similar out-
of-sample performance to black-box machine learning methods. With this
model, the data provide support for monotonicity and time variability of the
conditional expectation function. Additionally, we develop an approach for
characteristic selection using loss functions to summarize the posterior distri-
bution. Standard unexplained volume, short-term reversal, size, and variants
of momentum are found to be significant characteristics, and there is evidence
this set changes over time.

1. Introduction. This paper considers the problem of predicting a firm’s stock return
with observable firm characteristics. These characteristics may be accounting measures, such
as market capitalization and book value as well as other observables such as a firm’s past
performance. In this paper, returns refer to excess returns—the return on an asset that exceeds
the “risk-free” rate of return on short-term Treasury bonds. Let rit be the excess return of
firm i at time t , and let characteristics be incorporated into the vector xi,t−1. The conditional
expectation function

(1.1) E(rit | xi,t−1) = f (xi,t−1)

is the object of interest. This paper accomplishes two goals. First, we develop a flexible
Bayesian model for f . We carefully examine the statistical benefits of theoretically-motivated
monotonicity constraints and time variation for our case study. These model features are
previously unexplored in the finance literature, and we adapt methods from Shively, Sager and
Walker (2009) and McCarthy and Jensen (2016) to accomplish this goal. Second, we present
a decision-theoretic framework for identifying the most predictive characteristics within the
vector xi,t−1, extending recent work in posterior summarization (Hahn and Carvalho (2015),
Puelz (2018), Puelz, Carvalho and Hahn (2015), Puelz, Hahn and Carvalho (2017), Puelz,
Hahn and Carvalho (2020)) to nonlinear models.

Discovery of monotonic relationships in finance began decades ago. Fama and French
(1993) found that, on average, smaller firms have higher returns than larger firms. Jegadeesh
and Titman (1993) and Jegadeesh and Titman (2001) documented that, on average, previ-
ously well-performing firms (past winners) continue to do well in the near future, and past
losers have low returns in the future. Patton and Timmermann (2010) develop statistical tests
for monotonicity in assets’ returns. However, work still remains to understand the modeling
impact of these revelations. In statistics, incorporating monotonicity constraints into models
is a known but underutilized tool; see Shively, Sager and Walker (2009) and Chipman et al.
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(2019) for recent developments. This paper presents a case study that combines decades-old
empirical beliefs of monotonicity with this exciting and new statistical modeling work.

The list of potentially predictive characteristics is long and continues to grow, and numer-
ous studies in finance have shown that these characteristics are independently useful for mod-
eling returns. Harvey, Liu and Zhu (2016) catalog over 300 such characteristics and factors.
Recently termed the “Factor Zoo” by Cochrane (2011) due to the sheer number of proposed
characteristics and factors, the presence of hundreds is misleading; however, as many char-
acteristics are likely drawing information from the same latent attributes of these firms and
the economy. Understanding f as well as its characteristic inputs is a venerable and urgent
case study in finance and asset pricing. Hence, this paper will address the following ques-
tions: Which characteristics are important? And furthermore: When are these characteristics
important? Of course, the size of xi,t−1 and the stationarity of the relationships between char-
acteristics and returns depend on the choice of f , which brings us to a third question: What
do these relationships look like?

1.1. Literature and contributions. A traditional approach for understanding f is model-
ing the cross-section of firm returns as linearly related to a set of firm characteristics. Finance
data, especially company return data, is a low-signal, high-noise environment, and structure
is helpful to deal with this tremendous noise. Linear regression represents one extreme of
model structure and simplicity, and most papers have at least some regression analysis—most
famously the methods presented in Fama and MacBeth (1973). These methods are popular
not only because of their structure but also because of their interpretability. Linear regression
is widely known, easily estimated and returns a single number representing the relationship
between X and Y (the slope). Yet, as Freyberger, Neuhierl and Weber (2020) state: “no a pri-
ori reason exists why the conditional mean function should be linear.” The core assumption of
this standard approach may not hold. Therefore, recent literature considers nonlinear models
for the return-characteristic relationship (Freyberger, Neuhierl and Weber (2020), Gu, Kelly
and Xiu (2020)). Papers such as Gu, Kelly and Xiu (2020) utilize machine learning (ML)
methods to infer nonlinear and joint relationships among characteristics and lie at the other
modeling extreme: highly flexible but minimally interpretable. In this paper we show that
these minimally-interpretable ML methods (trees/forests specifically) provide surprisingly
little advantage in predictive ability within the application area of finance and especially as-
set pricing.

An alternative, nonparametric, nonlinear approach for modeling f that maintains inter-
pretability is portfolio sorting. This is done by cross-sectionally ranking firms based on an
explanatory variable and computing the average firm return within each decile (or other quan-
tile). Cattaneo et al. (2020) and Freyberger, Neuhierl and Weber (2020) show that this ap-
proach is fitting a step function to return-characteristic relationship, as opposed to a linear fit
typically from regression. However, a step function is a simplistic functional form of the the
return-characteristic relationship, as it must be assumed constant within deciles and no infor-
mation is shared across deciles. Fama and French (2008) summarize these issues in saying
“sorts are clumsy for examining the functional form of the relation between average returns
and an anomaly variable.” Additionally, one quickly encounters dimensionality issues. Fit-
ting a mean to each sorted decile of p variables requires 10p datapoints which very quickly
is not plausible. Furthermore, Cattaneo et al. (2020) show that using 10 portfolios (deciles) is
not enough and that it is optimal to use more.

The methodology presented in this paper is most similar to Freyberger, Neuhierl and Weber
(2020). We model f using additive quadratic splines, and this provides interpretability and
flexibility. Our paper differs from Freyberger, Neuhierl and Weber (2020) in four significant
ways: We (i) characterize uncertainty through a fully Bayesian framework, (ii) examine the
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theoretical and statistical benefits of monotonicity constraints incorporated through priors,
(iii) account for time variation through a first-principled, power-weighting density approach
and (iv) utilize statistical uncertainty to select the meaningful characteristics at each point
in time. Standard unexplained volume, short-term reversal, market capitalization (size) and
variants of momentum are found to be significant characteristics, and there is evidence this
set changes in time. The data also provide support for monotonicity and time variability of
the conditional expectation function.

The rest of the paper proceeds as follows. Section 2 details the modeling methodology
which relates to contributions (i)–(iii) above. Section 3 presents a simulation study to de-
scribe the merit of using monotonicity for structure and using power-weighting densities for
nonstationarity. Section 4 details the posterior summarization approach that is used to select
the meaningful characteristics which corresponds to contribution (iv) above. Section 5 reports
the results from both the modeling and selection processes. Section 6 concludes.

2. Modeling methodology. As discussed in Section 1, our model is comprised of the fol-
lowing components motivated by the case study: interpretability through additivity, flexibility
through nonlinearity, minimal/specific structure through monotonicity, uncertainty through
Bayesian priors and nonstationarity through weighted densities. We outline each component
in detail below.

Interpretability via an additive model. We address the first modeling objective by using
an additive model such that each characteristic’s effect is separable from the others. Let

(2.1) E(rit |xi,t−1) = αt +
K∑

k=1

fkt (xi,k,t−1),

where rit is the time t return for firm i, αt is the intercept term for time t and xi,t−1 is a K

length vector of firm i’s characteristics at time t − 1, where each characteristic is individually
ranked across all nt−1 firms at time t − 1

(2.2) xi,k,t−1 = rankk,t−1(characteristici,k,t−1)

nt + 1
.

Thus, xi,k,t−1 ∈ (0,1) is the empirical quantile of characteristic k for firm i at time t −1. This
rank transformation is done to eliminate two issues with the predictors variables: (i) outliers
and (ii) changes in the range of characteristics over time. For example, the market capitaliza-
tion (size) of firms in general has increased, and a one-billion-dollar firm today might be in
the 10th percentile of size while 30 years ago it was in the 90th percentile. Using the “em-
pirical percentiles” from the rank transformation eliminates these issues as we only look at
a firm’s relative place in the distribution of a given characteristic; Freyberger, Neuhierl and
Weber (2020) scale characteristics in the same way.

However, we propose a novel adjustment. The intercept in equation (2.1) is the expected
return when all x’s are zero and, under the rank transformation, xi,k,t−1 = 0, ∀k means the
smallest possible value for x across all variables. The intercept αt in equation (2.1) would
be interpreted as the average return for a “perfectly minimum” firm, that is, a firm with the
lowest value of each characteristic across all firms. This firm does not reasonably exist. As
such, we shift the x-space by setting

(2.3) xi,k,t−1 = rankk,t−1(characteristici,k,t−1)

nt + 1
− 0.5

such that xi,k,t−1 ∈ (−0.5,0.5). Now, the intercept αt represents the average return for a
“perfectly median” firm, that is, a firm that has the median value across all characteristics.
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Nonlinearity through quadratic splines. We address the second modeling objective
through the use of quadratic splines. Typically, this would mean

(2.4) f(x) = β1x + β2(x)2 + β3(x − x́1)
2+ + · · · + βḿ+2(x − x́m)2+

for m knots, 0 < x́1 < · · · < x́m < 1, where (y)+ = max(0, y).
However, our intercept adjustment requires an adjustment to the standard notation. Let fkt

be the quadratic spline for characteristic k at time t . For now, we’ll drop the ikt subscripts
for simplicity. For a given series of m̀ + 1 nonpositive knots (x̀m̀ < · · · < x̀1 < x̀0 = 0) and
ḿ + 1 nonnegative knots (0 = x́0 < x́1 < · · · < x́ḿ), we set

f(x) = β1x + β2(x)2− + β3(x − x̀1)
2− + · · · + βm̀+2(x − x̀m̀)2−,(2.5)

+ βm̀+3(x)2+ + βm̀+4(x − x́1)
2+ + · · · + βm̀+ḿ+3(x − x́ḿ)2+,(2.6)

where the (y)+ = max(0, y) and (y)− = min(0, y). This can be abbreviated as f (x) = x∗′β
where x∗ is the carefully constructed quadratic spline basis.

Structure imposed through monotonicity. Theoretical or a priori information can be used
to add structure to these splines. We implement this through monotonicity constraints. With-
out loss of generality we create these splines to be nondecreasing (can be nonincreasing)
using the ideas of Shively, Sager and Walker (2009), Section 3, adapted to have both positive
and negative knots.

By definition, the spline is monotonic nondecreasing if the first derivative is nonnegative
for all x: f ′(x) ≥ 0. While specifications are in Appendix B, we suffice it here to say that the
above restriction yields m̀ + ḿ + 3 linear constraints to satisfy, which can be summarized in
a lower triangular matrix. We label this matrix L such that 0 ≤ Lβ = γ , and we see that L
acts as a projection matrix, projecting our more complicated constraints on β to the simple
nonnegative constraints on γ . Hence,

f(x) = x∗′β = x∗′L−1Lβ = w′γ ,(2.7)

where w′ = x∗′L−1 is now our modified spline basis. Returning the use of subscripts ikt ,
equation (2.1) is now

(2.8) E(rit |xi,t−1) = αt +
K∑

k=1

w′
iktγ kt .

We allow our splines to be monotonic if there is prior information about the direction of
a relationship between a firm characteristic and its stock return. For example, if we believe
that a smaller firm will, on average, have higher returns than a larger firm, regardless of
their absolute size (Fama and French (1993)), then we believe size should have a monotonic
relationship with expected returns. Monotonicity is one of the less intrusive structures we
can assume to reign in the flexibility, and potential overfit, of splines. We demonstrate that
enforcing monotonicity has statistical benefits as well as a useful interpretation. When the
data is especially noisy, monotonicity is helpful in decreasing the variability of the inferred
relationship between stock returns and characteristics.

Bayesian model specification. With equation (2.8) introduced, we can describe the statis-
tical model on our uncertainty. Let

(2.9) rit = αt +
K∑

k=1

w′
iktγ kt + εit

with εit ∼ N(0, σ 2).
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We now set a prior on the coefficients γ . To protect against overspecifying the number
of knots, we include shrinkage as an important part of this prior. Let Ijkt = 1 indicate that
γjkt > 0 and Ijkt = 0 indicate that γjkt = 0, where j indexes the m̀ + ḿ + 3 coefficients.
Thus, Ijkt is a Bernoulli random variable with prior probability P(Ijkt = 1) = pjk . This
leads us to the conditional prior on γjkt ,

(γkj |Ikj = 1, ·) ∼ N+
(
0, ckσ

2)
,(2.10)

where N+ indicates a truncated Normal distribution with support on positive numbers (to
change this entire setup to monotonic decreasing splines, we would simply change the support
to negative numbers and appropriately adjust the definition of Ijkt above).

This setup allows us to let the data select the knots for the splines. By overspecifying
the number of potential knots, the data will inform the model as to which knots should be
included (Ijkt = 1) and which should not (Ijkt = 0). This way, we include more knots than
needed, and the shrinkage instigated by our priors will remove knots that are not supported
by the data.

Following Shively, Sager and Walker (2009), we place uninformative priors on σ 2 ∼
U(0,103) and α ∼ N(0,1010), as well as set pjk = 0.2,∀j, k. ck is chosen, ∀k, to be
2253.689, the average number of firms in a quarter across all quarters.

Nonstationarity incorporated through power-weighted densities. While using all historic
data (i.e., using all data up to and including time t − 1 to forecast time t events) is an option,
this does not allow the parameters to adjust to different trends over time (nonstationarity).
Hence, we look at two approaches. First, we look at the traditional rolling-window method,
where a model uses the most recent M time periods only, dropping all time periods older than
the cutoffs. In this paper, akin to much of the empirical finance literature, we use M = 120
months as well as M = 60 and 36 months to show the effect of different window lengths.
There are, however, methods that allow the window length to be different for different assets
(Ang and Kristensen (2012)) though here we simply apply the same nonstationarity approach
for all firms over all points in time.

Second, we use the power-weighted likelihood approach of McCarthy and Jensen (2016).
For ωt ∈ [0,1], such that ω1 ≤ ω2 ≤ · · · ≤ ωτ , the likelihood at time τ ∈ {1, . . . , T } discounts
the impact of past data: p(r1, . . . , rτ |	τ) = ∏τ

t=1 p(r t |	τ)
ωt , to allow more recent data to

receive more weight than older data, we choose ωt = δτ−t , for δ ∈ (0,1]. Hence, for δ = 0.99,
yesterday’s ω is 99% of today’s. Thus, these likelihoods have an asymptotic effective sample
size of 1

1−δ
, for example, 1

1−0.99 = 100.
McCarthy and Jensen (2016) point out that this is a simpler alternative to specifying a

model for the evolution process itself. They also point out that the rolling-window method is
a special case of these power-weights, such that ω1 = · · · = ωτ−120 = 0 and ωτ−119 = · · · =
ωτ = 1.

3. Simulation. Why monotonicity? When modeling functional phenomena, if the un-
derlying generative function is in fact monotonic, then assuming monotonicity will improve
the model. Specifically, the uncertainty about the fitted curve will be smaller, or, in other
words, the posterior will be more precise. In Figure 1, we present a monotonic increasing
mean function. The gray data points are randomly generated with heteroskedastic noise. Here,
we model the data using varying monotonicity constraints. Posterior curve draws are shown
in pink, and the posterior mean curve is in red. We see that, while the unconstrained quadratic
spline fits the underlying function reasonably well, the monotonic constrained spline fits bet-
ter. Lastly, enforcing inappropriate constraints, namely a nonincreasing constraint in this case,
disables the model. Hence, adding wise constraints help models ignore more of the noise and
better detect signal.
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FIG. 1. Data generated from a monotonically increasing mean function. Shown are three spline fits to the sim-
ulated data: (left) nonincreasing quadratic splines, (middle) quadratic splines without constraints and (right)
nondecreasing quadratic splines.

We believe there is signal in the firm characteristics data we’re analyzing, but there is a lot
of noise, so this property of the model is desirable. When there is a weak signal (a barely-
nonzero generative function) but low noise, models perform about equally with and without
monotonicity. Again, we show in the top row of Figure 2 where the generative curve is in
black, data generated with homoskedastic noise in gray, the posterior draws in pink and the
posterior mean curve in red.

However, as noise increases, the unconstrained spline tends to overfit to the data as in the
bottom row of Figure 2, where the noise of the generative model is twice that of the top row.
Note that the posterior uncertainty around the nondecreasing curve is visibly smaller than

FIG. 2. Data generated from a monotonically increasing mean function. Shown are three spline fits to the sim-
ulated data: (left) nonincreasing quadratic splines, (middle) quadratic splines without constraints and (right)
nondecreasing quadratic splines. The top row is a low-noise environment, and the bottom row is a high-noise
environment.
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the unconstrained spline. The unconstrained model can fit to the noise of the data instead of
the underlying true function. In the bottom row the mean of the nondecreasing spline almost
match the spirit of true function. Finally, we of course see that inappropriate constraints
(nonincreasing) force the resulting model to fail entirely to model the underlying phenomena.

Why discount past information? Often, forecasts of future returns use all historical data,
equally weighted. However, if the function of interest changes over time, then the more time
between a past observation and the future time of interest, the less relevant that observation
is.

As an example, consider the function f (x, a) = ax2 as a → 0. In Figure 3, we plot this
parabola for a ∈ {10, . . . ,1,0}, such that at time 1 the function is 10x2, and at time 11 the
function is 0. This is a parabola flattening over time, as illustrated by the random data points
and their mean generative curve are fading from black to white. The pink curves are the draws
from a power-weighted-discounted model with δ = 0.8, where at time τ , ωt = 0.8τ−t , which
implies an [asymptotic] effective sample size of 1

1−δ
= 5, and the red curve is the posterior

mean curve. The light blue lines are the MCMC sample curves from a historic-window model
(all past time periods are equal weighted, so sample size is 11 time points), and the blue
curve is their posterior mean. As displayed in Figure 3, allowing for time variation permits
the model to better track the current state of a relationship that changes over time, as the red
curve is closer to current function (flat) than the blue curve is.

It is important to highlight the differences between a rolling-window model and our pro-
posed alternative. First, the rolling-window method is a special case of this model (see
McCarthy and Jensen (2016)). Second, completely forgetting past data is not a desirable
property. While older data is clearly not as valuable or pertinent as recent data, its value is
not zero. Furthermore, if a 10-year rolling window is used, then data from 120 months ago
is valued the same as today’s, while data from 121 months ago is thrown away, as shown
in the figure below. The arbitrary cutoff between 120 and 121 months does not reflect the
true value of information on either side of that threshold. We propose that, in the case of
time-varying phenomena, the importance of data decays as the data ages, akin to our power-
weighting specified above. The exception to this are structural shocks that may occur, but even
a 120-month rolling window will take 120 months to fully adapt. If adapting to shocks is the
desired property, a structural break model should be used (Bekaert, Harvey and Lumsdaine

FIG. 3. (left) Generated data from a parabolic function which collapses to a constant function over 11 time
points. White to black points display the simulated data, with darker colors corresponding to points generated
more recently. Also displayed are the function fits when treating each time point equitably (blue) vs. having decay-
ing weights for increasingly further away time points (red). (right) Example weighting scheme for rolling-window
weighting (black) versus time-decay weighting (green).
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(2002), Lettau and Nieuwerburgh (2008), Pastor and Stambaugh (2001)). However, incorpo-
rating the uncertainty around potential future structural breaks in one’s model is a challenge
(Pettenuzzo and Timmermann (2011), Smith and Timmermann (2018)) but will help bet-
ter reflect model/parameter uncertainty if incorporated correctly. Smith, Timmermann and
Zhu (2019) actually perform variable selection across structural breaks in a Bayesian model,
though we pursue a different path to variable selection as described below.

4. Selection methodology. This section develops an approach for selecting meaningful
firm characteristics. The aim is to identify characteristics of a firm that are predictive of its
return and how this set varies in time. This approach builds upon the decision-theoretic se-
lection procedure first proposed in Hahn and Carvalho (2015) and developed for econometric
applications in Puelz, Hahn and Carvalho (2017), Puelz, Hahn and Carvalho (2020).

Rewriting the model as a predictive regression. As a first step, we rewrite our model as
a predictive regression. Focusing on time t in the cross-section, the fully-specified model for
the vector of nt firm returns Rt is

Rt ∼ N
(
αt1nt + Xt−1βt , σ

2
t Int

)
with Xt−1β t = Wt−1γ t ,

αt ∼ N
(
0,1010)

, σ 2
t ∼ U

(
0,103)

,

(γjkt |Ijkt = 1) ∼ N+
(
0, ckσ

2
t

)
, (γjkt |Ijkt = 0) = 0,

Ijkt ∼ Bn(pjkt = 0.2),

(4.1)

where Xt−1β t = Xt−1diagK(L)−1diagK(L)β t = Wt−1γ t . Note that diagK(L) is a block di-
agonal matrix of size K(m̀ + ḿ + 3) × K(m̀ + ḿ + 3) where each lower triangular block is
the projection matrix L. Also, Xt−1 is matrix of size nt × K(m̀ + ḿ + 3), and β t is vector of
size K(m̀ + ḿ + 3). Therefore, each firm is given a row in Xt−1, and each m̀ + ḿ + 3 block
of β t corresponds to the coefficients on the spline basis for a particular characteristic, k. In-
corporating the intercept directly into the characteristic matrix, we can write the generating
model compactly as

Rt ∼ N
(
Xt−1Bt , σ

2
t Int

)
,(4.2)

where Xt−1 = [
1nt Xt−1

]
and Bt = [

αt β t

]
.

After rewriting our model more compactly, we delve into the second main contribution
of this paper—firm characteristic selection in light of uncertainty. As described in the In-
troduction, there are many firm characteristics available for predicting returns. This leads to
a natural question, which small subset of characteristics is most relevant for predicting the
cross-section of firm returns? Further, does this subset vary over time?

Two components: Predictive uncertainty and loss. Suppose we have fit Model (4.1) using
standard Monte Carlo methods. We now have access to the posterior distribution over all
parameters: p(	t | past data = Rt ). Also, conditional upon these posterior draws, we can
simulate from the predictive distribution, providing draws from the joint distribution of future
firm returns R̃t and model parameters 	t , written as: p(R̃t ,	t | past data = Rt ). Uncertainty
from the predictive is the first input for the selection procedure.

The second component is a rule for comparing models to one another; we call this our
loss function. With both predictive uncertainty and a loss function in hand, we can ask and
answer the pivotal question: In light of uncertainty, how do simpler models with fewer char-
acteristics compare to the model including all characteristics? The decision-theoretic blend of
these two components, a Bayesian model and a loss function, will allow us to discern which
characteristics are important while taking uncertainty of all forms into account.
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Optimizing expected loss and model selection. We formalize this methodology by first
deriving the expected loss function. A natural measure for our characteristic selection goal is
the log density of Regression (4.2). Note that (4.2) is not being used in a statistical capacity
for model estimation but rather as a measure of how well a sparse representation of the linear
predictor represents future data. The log density may be written as

L(R̃t ,At ) = 1

2
(R̃t −Xt−1At )

T (R̃t −Xt−1At ),(4.3)

where R̃t is future return data at time t and At is the “action” to be taken by the data analyst.
This action is intended to represent a sparse summary of the regression vector Bt . In order to
encourage sparsity in At , we include an additional penalty function � with parameter λt ,

Lλt (R̃t ,At ) = 1

2
(R̃t −Xt−1At )

T (R̃t −Xt−1At ) + �(λt ,At ).(4.4)

We now integrate the loss function over all uncertainty given by the predictive distribution
of asset returns conditioned on observed data: p(R̃t | Rt ) = ∫

p(R̃t | 	t,Rt )p(	t | Rt ) d	t .
We do this integration in two steps, first over R̃t | 	t and second over 	t ,

Lλt (At ) = E	tER̃t |	t

[
1

2
(R̃t −Xt−1At )

T (R̃t −Xt−1At ) + �(λt ,At )

]

∝ 2B
T

t X
T
t−1Xt−1At + AT

t X
T
t−1Xt−1At + �(λt ,At ) + constants.

(4.5)

After integration we notice that the posterior mean of the coefficients, Bt , appears in the first
term, while the expectations pass over the second and third terms.

We complete the square and drop constants to obtain the final form of the integrated loss
function,

Lλt (At ) = ‖Xt−1At −Xt−1Bt‖2
2 + �(λt ,At ).(4.6)

For a fixed time t , Loss (4.6) has the same form as the one derived for linear regression
models in Hahn and Carvalho (2015). The third and final step is to choose a penalty function
� and optimize the loss function for a range of λt for each time t .

For this paper we choose �(λt ,At ) = λt

∑K
k=1‖Ak

t ‖2, where Ak
t is the kth m̀+ḿ+3 block

of the vector At after neglecting the intercept. The group lasso algorithm of Yuan and Lin
(2006) is then used to minimize the integrated loss. This provides a way to jointly penalize
groups of covariates. In the context of our financial application, this “group penalization”
permits the selection of firm characteristics by grouping the coefficients of a single quadratic
spline together in the penalty.

In order to see this, recall the structure of the sparse action At . It is a K(m̀ + ḿ + 3) + 1
length vector where the kth m̀ + ḿ + 3 block (excluding the intercept) corresponds to the
spline basis for firm characteristic k. By using the approach outlined in Yuan and Lin (2006),
we group together the spline bases for each characteristic. Then, Loss (4.6) is minimized
for varying penalty parameter choices, such that we can look at a range of quadratic spline
models built from one characteristic up to the 36 characteristics available.

Posterior summary plots. These sparse models are optimal under our choice of loss and
fixed level of regularization given by the penalty parameter, and we can compare them in
light of the statistical uncertainty from the Bayesian model. Denoting the collection of sparse
optimal models {A∗

λt
}, we study the distribution of the difference in loss of a reduced model

and the full model,

λt = L
(
R̃t ,A∗

λt

) −L0
(
R̃t ,A∗

0
)
,(4.7)
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where L is as defined in equation (4.3). Note that, as L is a random variable, so is . Cru-
cially, this metric incorporates statistical uncertainty through the predictive and optimality
through consideration of the set {A∗

λt
}.

An important feature of this approach is the ability to identify important return predictors
and how this set may vary over time. The time variation and connection across time periods is
driven by the power-weighted density approach and embedded in the posterior (recall that the
rolling-window model is a special case of the power-weighted density approach). Therefore,
although the minimization of the integrated loss is performed myopically at each point in
time, the variation of optimal sparse models across time may be studied.

5. Case study. Our case study focuses on a rich data set from an earlier version of
Freyberger, Neuhierl and Weber (2020). It is a monthly panel where we observe a cross-
section of firms, their excess return as well as 36 lagged characteristics of each. The full
dataset spans 623 months of returns, July 1962 through May 2014, and includes 1,404,048
observations. We train our models on the first 12 years and then test and update the models
on the remaining data. Thus, the results shown cover 1974–2014. The posterior distributions
and training models are updated annually.

The characteristics are listed in Table 5 as well as the direction of monotonicity we impose
for each. We will examine three different sets of splines: “Splines-0” with no constraints (non-
monotonic), “Splines-6” with some constraints and “Splines-24” with many constraints. The
“Splines-6” model applies the rather established evidence from the financial literature (Fama
and French (2016)) and constrains size, book-to-market, profitability, investment, momentum
(Jegadeesh and Titman (1993), Jegadeesh and Titman (2001)) and intermediate momentum
to be monotonic. For the “Splines-24” model we impose monotonicity constraints on every
variable whose constraint had reasonable support in the literature; thus, 24 of the 36 variables
are constrained. The supporting papers are also listed in Table 5.

We examine three different benchmarks: ordinary least squares (OLS), random forests
(Breiman (2001)) and Bayesian additive regression trees or “BART” (Chipman, George and
McCulloch (2010)). The latter two are nonparametric ensemble learning models with compet-
itive predictive ability across many applications. Each of these models are given all 36 char-
acteristics, and fit with different training window sizes: 36 months, 60 months, 120 months
and the historic window. Tree-based models are interesting in this case, as they are effectively
portfolio sorts (i.e., step functions) with breaks between portfolios (i.e., partitions) chosen by
the data.

Our random forest model uses 300 trees, six layers deep, and tries five characteristics at
each split node. This specification allows for deep, complex and diverse trees. These tuning
parameter values were chosen similar to the models in Gu, Kelly and Xiu (2020).1 Like Gu,
Kelly and Xiu (2020), we use 300 trees per forest. Each forest then has two tuning parameters.
First, each tree in the forest has a certain depth (anywhere from one to six layers) and, the
deeper the tree, the more complex the model in terms of large differences in leaf values,
nonlinearities and interactions. Second, each forest can have varying numbers of variables
explored at each split in the tree (either three, five, 10, 20 or 30 characteristics per split),
and this controls how diverse the set of covariates is in each tree. This provides 30 different
combinations of tuning parameters, and we fit all 30 with a 120-month rolling window. The
tuning parameter values that yielded the highest ex post out-of-sample R2 were chosen. The
ranger package (Wright and Ziegler (2017)) was used to fit the models in R.

1Gu, Kelly and Xiu (2020) reselect their tuning parameters in a rolling manner, whereas here we make a single
choice ex post.
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Our BART model was fit using the newly developed XBART package in R (He, Yalov
and Hahn (2019)) with the tuning parameters recommended in their paper. Unlike random
forests, the default number of trees is a function of the data. Also, BART specifies a prior on
tree depth which implies the trees in an ensemble can be of varying depth depending on what
the data dictate.2

Additionally, we fit nine other specifications of our additive quadratic splines model across
the three different sets of monotonic constraints mentioned above and across three different
specifications of discounting. Using the McCarthy and Jensen (2016) approach, we imple-
ment power-weighted discounting with δ = 0.980 which corresponds to an effective sample
size of 50 months, δ = 0.990 for roughly 100 months and δ = 0.998 for about 500 months,
thus providing only slight discounting.

In the analysis to follow, we present two sets of results. First, we detail the modeling
results, including out-of-sample performance and partial effect function plots. Second, we
present characteristic selection results (conditional upon the models).

5.1. Modeling results. The impact of model specification. In this section we display the
forecasting ability of the model specifications considered. Since our selection process re-
quires a posterior distribution as an input, this analysis helps in identifying the model (equiv-
alently, the monotonicity and time-variation specifications) among our 21 different spline
specifications that possesses the best predictive ability.

We first look at the out-of-sample (OOS) R2, given in a percentage scale,

(5.1) R2
OOS = 100

(
1 −

∑
i,t (rit − r̂it )

2∑
i,t r

2
it

)
,

where r̂it are the model forecasts.3 The results for the entire testing period (1974–2014) are
given in Panel A of Table 1 and provides two main takeaways. First, longer window sizes
are best for forecast accuracy, with the historic window model performing best. Second, our
spline models perform somewhere in between that of random forests and BART. However,
additive splines do not include interactions between characteristics and, therefore, are “in-
terpretable,” meaning we can easily display and understand the partial effect of each charac-
teristic. Additionally, having a small number of monotonic constraints (Splines-6) performs
uniformly better than no constraints (Splines-0), though this effect size may be small. A slight
improvement from no to some constraints is to be expected, as observed in Figures 1 and 2.
In summary, the important discoveries are that, (i) spline models can have similar forecast
performance to tree/forest models without being a black-box and (ii) monotonic constraints
can yield some improvement.

Table 2 shows the OOS results of Table 1 with the test period divided into thirds.4 In
terms of R2

OOS, the longer window length models perform better out-of-sample. Also, BART
performs well regardless of the time period. We do see that random forests surpass the per-
formance of the splines in the latest subperiod. Again, if the sole purpose of modeling were
to improve forecasting, then a black-box machine learning method is best. However, if one
is interested in an interpretable model (which we define as being able to visualize the partial

2XBART does not use the standard BART posterior sampling techniques but rather a “grow-from-root” backfit-
ting procedure that is efficient and faster than a standard MCMC sampler. The suggested number of trees for the
XBART sampler is 0.25 ∗ log(n)log(log(n)), where n is the number of observations the model uses for training.

3As in Gu, Kelly and Xiu (2020), the total sum of squares in the denominator assumes returns are mean zero.
4Table 6 in the Appendix breaks the testing period into only two subperiods and shows, essentially, the same

patterns changing over time with less granularity.
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TABLE 1
Out-of-sample model performance when forecasting monthly returns over the 1974–2014 period. Out-of-sample
R2 is calculated as done in Gu, Kelly and Xiu (2020). Sharpe ratios use the returns from equal-weighted decile
portfolios, buying stock in the firms whose returns are forecasted to be in the top decile and shorting the bottom

decile. Bolded values indicate the best two models for a given window length

Panel A: OOS R2 Panel B: Sharpe ratio

Window size (months) Window size (months)

All 120 60 36 All 120 60 36

OLS 0.57 0.43 −0.07 −0.57 2.45 2.26 1.71 1.48
Random Forest 0.74 0.62 0.14 −0.43 3.11 2.61 1.89 1.45
BART 1.22 0.98 0.23 −0.58 3.44 3.29 2.83 2.35
Splines-0 0.87 0.68 0.24 −0.16 3.02 2.98 2.60 2.30
Splines-6 0.87 0.68 0.25 −0.13 3.05 2.99 2.64 2.35
Splines-24 0.81 0.67 0.27 −0.09 3.14 3.22 2.71 2.41

effect of individual characteristics), then splines are a reasonable approach with performance
in the same ballpark as black-box methods.

Tables 1 and 2 also show the economic impact of the models in terms of Sharpe ratio. The
challenge with looking too closely at point forecasts (via R2) is that slight differences may
not matter much: the signal to noise ratio is small. Therefore, an alternative model compari-
son approach is to compute portfolio metrics. Like Freyberger, Neuhierl and Weber (2020),
these Sharpe ratios are calculated using the returns of an “equal-weighted hedge portfolio
going long the 10% of stocks with highest predicted returns and shorting the 10% of stocks
with lowest predicted returns.” These returns are forecasted monthly, and the portfolio is re-
balanced monthly. We present the annualized Sharpe ratio from these monthly returns in the
right panel of Table 1. We again see that BART’s forecasting accuracy includes good esti-
mation of which firms will be in the tails (which leads to large Sharpe ratios). However, we
also see that including more monotonic constraints in Splines-24 leads to large Sharpe ratios,
on par with and sometimes exceeding BART’s performance. In Table 2 we also see that the
Sharpe ratios decline over all specifications in the last third of the data, and this is likely a
result of the discovery of many characteristics/factors in recent decades.5

Why would the random forest, a more flexible model, not outperform splines? The bias-
variance tradeoff and low signal-to-noise environment in finance data are key concepts
affecting these results. The highly flexible nonlinear model given by the random forest is
overwhelmed with noise, and its resulting performance is poorer than it might have been oth-
erwise. This underscores a need for structured models in these applications beyond their ease
of interpretability. BART has bias toward smaller trees which protects against overfitting.
Similarly, bias induced by our structured monotonic spline models leads to the splines typ-
ically performing similar to, or outperforming, random forests out-of-sample, though both
structure and interpretability are minimal in random forests. In the following sections we
explore the return-characteristic relationships that our fitted models provide.

5The Sharpe ratios we report are rather high as we examine characteristics that were ex post discovered to be
useful predictors of returns. Thus, an investor in the past could not have done this. This is illustrated empirically as
we do see a drop in Sharpe ratios between the 1988–2000 period and the 2001–2014 period. For our purposes, we
are interested in the relative magnitude of one feature set’s model’s Sharpe ratio compared to another. Hence, these
numbers should only be interpreted for this out-of-sample comparison (or perhaps contemporary out-of-sample
exercises with past data).



1634 J. D. FISHER, D. W. PUELZ AND C. M. CARVALHO

TABLE 2
Out-of-sample model performance when forecasting monthly returns over over the January 1974 to December

1987, January 1988 to December 2000 and January 2001 to May 2014 periods. Out-of-sample R2 is calculated
as done in Gu, Kelly and Xiu (2020) and given in percentage points. Sharpe ratios use the returns from

equal-weighted decile portfolios, long on the firms with forecasted in the top decile and shorting the bottom
decile. Bolded values indicate the best two models for a given window length

OOS R2 Sharpe ratio

Window size (months) Window size (months)

All 120 60 36 All 120 60 36

1974–1987
OLS 0.70 0.45 0.34 0.01 3.17 3.01 2.79 2.64
Random Forest 0.64 0.40 0.23 −0.12 3.91 3.74 3.03 2.68
BART 1.32 1.01 0.74 0.47 3.92 3.83 3.74 3.53
Splines-0 0.89 0.63 0.53 0.33 3.84 3.74 3.57 3.45
Splines-6 0.90 0.64 0.54 0.35 3.77 3.79 3.64 3.44
Splines-24 0.84 0.61 0.53 0.35 3.84 3.79 3.59 3.38

1988–2000
OLS 0.51 0.37 0.21 −0.18 2.87 2.47 2.22 1.82
Random Forest 0.69 0.59 0.40 0.06 3.97 3.08 2.48 1.74
BART 1.34 1.18 0.89 0.54 4.45 4.25 3.99 3.00
Splines-0 0.92 0.78 0.67 0.32 3.82 3.80 3.61 2.95
Splines-6 0.93 0.79 0.68 0.34 3.90 3.78 3.55 2.97
Splines-24 0.86 0.73 0.64 0.33 4.10 4.28 3.82 3.05

2001–2014
OLS 0.62 0.54 −0.59 −1.29 1.66 1.61 0.78 0.61
Random Forest 0.88 0.79 −0.20 −1.18 2.06 1.67 0.95 0.56
BART 1.05 0.74 −0.80 −2.43 2.37 2.20 1.50 1.14
Splines-0 0.82 0.60 −0.39 −0.96 1.98 1.97 1.41 1.22
Splines-6 0.82 0.60 −0.39 −0.91 2.02 1.99 1.46 1.32
Splines-24 0.76 0.65 −0.29 −0.77 2.02 2.14 1.49 1.32

Table 3 shows the performance of spline models under different time-variation methods.
Recall that the effective sample sizes of δ = 0.998,0.990,0.980 are 500, 100, 50, respec-
tively. Hence, δ = 0.990 is most directly comparable to the 120-month rolling window, and
δ = 0.980 is in between the effective sample sizes of the 60- and 36-month rolling windows.
Using δ = 0.998 provides a slightly discounted version of the historic window, and we see
that these two approaches perform similarly over every period and over both metrics, with
the historic window having slightly better R2

OOS values. For medium effective sample sizes,
power-weighting with δ = 0.990 outperforms the 120-month rolling window on both met-
rics in the early period but that gap closes in the more recent periods. In fact, during the
1988–2000 and 2001–2014 subperiods, Splines-24 fit with the 120-month rolling window
produces rather high Sharpe ratios. With the smaller effective samples sizes, we see that
power-weighting with δ = 0.980 has better R2

OOS than the 60-month rolling window on the
first and last subperiod but comparable in the second subperiod. In terms of Sharpe ratio,
power-weighting is slightly better in first subperiod, rolling window is better in the second
subperiod and power-weighting is better in the final subperiod. By comparison, 36-month
rolling window performs poorly everywhere. As a method for dealing with nonstationarity, it
does not use enough data and is thus too flexible.

In summary, there are two conclusions for time variation in this dataset. First, larger (effec-
tive) sample sizes are preferred in terms of out-of-sample performance. The main exception
is that 120-month rolling windows can produce better Sharpe ratios than the historic window
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TABLE 3
Out-of-sample model performance when forecasting monthly returns over over the January 1974 to December

1987, January 1988 to December 2000 and January 2001 to May 2014 periods. Out-of-sample R2 is calculated
as done in Gu, Kelly and Xiu (2020) and given in percentage points. Sharpe ratios use the returns from

equal-weighted decile portfolios, long on the firms with forecasted in the top decile and
shorting the bottom decile

OOS R2 Sharpe ratio

Window size Window size
(months) Discounting weight δ (months) Discounting weight δ

Historic 120 60 36 0.998 0.990 0.980 Historic 120 60 36 0.998 0.990 0.980

1974–1987
Splines-0 0.89 0.63 0.53 0.33 0.87 0.80 0.69 3.84 3.74 3.57 3.45 3.73 3.83 3.75
Splines-6 0.90 0.64 0.54 0.35 0.87 0.79 0.68 3.77 3.79 3.64 3.44 4.04 3.96 3.66
Splines-24 0.84 0.61 0.53 0.35 0.83 0.76 0.65 3.84 3.79 3.59 3.38 3.91 3.87 3.68

1988–2000
Splines-0 0.92 0.78 0.67 0.32 0.91 0.82 0.67 3.82 3.80 3.61 2.95 3.89 3.70 3.38
Splines-6 0.93 0.79 0.68 0.34 0.92 0.83 0.67 3.90 3.78 3.55 2.97 3.93 3.67 3.44
Splines-24 0.86 0.73 0.64 0.33 0.83 0.75 0.62 4.10 4.28 3.82 3.05 4.07 3.75 3.59

2001–2014
Splines-0 0.82 0.60 −0.39 −0.96 0.78 0.62 0.31 1.98 1.97 1.41 1.22 1.97 1.98 1.72
Splines-6 0.82 0.60 −0.39 −0.91 0.78 0.61 0.31 2.02 1.99 1.46 1.32 2.02 1.98 1.79
Splines-24 0.76 0.65 −0.29 −0.77 0.72 0.54 0.28 2.02 2.14 1.49 1.32 2.00 1.86 1.92

for the Splines-24 model. Second, we see that power-weighting methods perform similarly
to traditional window methods in most cases, particularly in recent years. However, if a high
degree of time-varying flexibility is desired (i.e., a small effective sample size), then power-
weighting is likely the preferred approach.

The return-characteristic relationship. Figure 4 shows the partial effects of 16 character-
istics from the full posterior of the historic window model. Specifically, we use Splines-6 with
the subset of monotonic constraints, as it has the best fit in terms of forecast error; see Ta-
ble 1. Each individual pane shows the partial effect of a characteristic, assuming the other 35
characteristics are held at their medians. The first thing to note are the strong effects of size,
momentum, short-term reversal, standard unexplained volume and price to 52-week-high.
We also see that some effects are clearly not monotonic: turnover, idiosyncratic volatility
and price to 52-week-high. This provides important insight into why excessive monotonic
constraints can hurt the model. Additionally, there are nearly flat partial effects in the full
posterior, such as book-to-market which is a staple in empirical finance work. We look into
this phenomenon in Section 5.2.

The return-characteristic relationship, over time. We next look at partial effects given
at different points in time for the different models in Figure 5. This figure shows the partial
effect of firm size on returns when holding all other variables at the median, estimated by
multiple linear regression (OLS), a random forest, BART and our different spline models.
The effects and their uncertainty are given for January of 1974, 1994 and 2014, each using
a 120-month window of training data (rolling-window models). Generally, we see the size
effect growing stronger over time: the smallest firms see much larger average returns than
all other firms. This effect is blurred by standard regression’s assumption of a strictly linear
relationship. Random forests pick up this small-firm phenomenon, but the resulting curve
is extreme and does not change much over time compared to BART and the spline models.
The spline and BART partial effects look similar. The splines, with shrinkage on each knots’
coefficient, smoothes over the noise picked up in BART’s estimates. Without this degree of
shrinkage, the spline estimates of characteristics’ partial effects can contain undesired waves.
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FIG. 4. Effects of characteristics on returns over the historic window of 1974–2014 period (each observation
equally-weighted over time) using the Splines-6 model. Here, only six variables are constrained to be monotonic:
size, book-to-market, investment and profitability on the first row (Fama and French (2016)) as well as momentum
and intermediate momentum on the second row. The remainder of the second row is composed of other functions
of past returns. The third is composed of various pronounced effects, while the fourth row contains characteristics
with much smaller or no effects in the full posterior. The three black curves are the posterior mean and the 95%
credible bands. The transparent orange curves are each of the MCMC draws, such that darker orange areas
reflect greater posterior density. The vertical gray lines show where the knots are placed. The horizontal axes are
the percentiles of the characteristic. The vertical axes are the expected returns.

For example, the partial effect estimates in Freyberger, Neuhierl and Weber (2020) would
be smoother (less wavy within noisy data) if additional shrinkage were imposed. Smoothing
over noise is also aided by imposing monotonic constraints where appropriate. Furthermore,
this figure visually demonstrates two sources of uncertainty and variance reduction, more
data and more structure (the bias part of the bias/variance tradeoff). There are more firms in
2014 than in 1974, and thus the 95% credible or confidence bands decrease as we move from
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FIG. 5. Comparing functions of size (market cap) over time. Assumes all other variables are held at their
medians (0.5). Each uses a 120-month rolling window. The horizontal axes are the percentiles of size. The vertical
axes are the expected returns. When three black curves are present, they are the posterior mean and the 95%
credible bands. The transparent orange curves are each of the MCMC draws, such that darker orange areas
reflect greater posterior density. The vertical gray lines show where the knots are placed.
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the left panes to the right panes. The further reduction in variance we see as we progressively
move from the middle right panes to the bottom right panes comes from adding monotonic
constraints. This is especially seen in the tighter probability bands in the 2014 panes: as more
monotonicity constraints are added to the model in general, the estimate of the size effect
becomes more certain, even though the splines for size never appear nonmonotonic.

Figure 6 shows the annual progression of the splines. There are two different color schemes
to denote two different sets of axes. The first panel illustrates a common pattern—little change
over time. The effect of standard unexplained volume is fairly consistent over time with slight
fluctuations. Next, while frequently included in our models and most other papers’ asset pric-
ing models, book-to-market does not have a very strong effect, though this could change
with different control variables. We see some value premium (high expected returns of high
book-to-market firms) in the late 1970s and low returns of growth firms (low percentiles of
book-to-market) in the 2000s, which, as this is a 120-month rolling window, likely reflects
the burst in the dot-com bubble. The positive returns seen by the smallest firms (size) increase
halfway through the period, while there is little effect on the large firms until the Great Reces-
sion, as seen in the red dip near the end of last decade. While the effect of short-term reversal
(firms performing well last month tend to underperform this month and vice versa) on the
low percentile/worst firms’ positive returns is fairly stable over time, the negative effect on
returns of last month’s winners depletes over time.

5.2. Selection results. Which characteristics are important? We first look at which char-
acteristics are important over the whole time period, 1974–2014. To do this, we use the his-
toric window model where each observation over the 41-year period receives equal weight.
Also, Splines-6 (the small set of monotonic constraints) is used, as it has the best fit in terms
of forecast error; see Table 1. Then, posterior summarization is performed as detailed in Sec-
tion 4, except that we look at the whole period as a single time step; thus, Xt−1 contains data
from over the whole time period. We do this by looking at the distribution of the difference
in loss of a reduced model, and the full model defined in expression (4.7).

A convenient feature of the selection methodology is the ability to undertake a full sample
analysis such as this. Beyond the loss function, the remaining components for the method
are the predictive distribution calculated at the end of our sample and a subsample of our
data to build Xt−1.6 Then, the expected loss is computed, optimized and the optimal sparse
models are compared in light of predictive uncertainty. This separation of inference from
characteristic selection is a helpful tool for exploratory analysis within our case study.

In Figure 7 we show a difference in loss metric λt in the left panel and the probability that
a sparse model has less loss than the full model, P(λt < 0), in the right panel for a sequence
of models with varying numbers of included characteristics. One can think of λt as indexing
models of varying sizes. The models in this sequence are minimum loss models for each
number of included characteristics.7 Figure 7 shows that using 27 or more characteristics has
a very high probability of having the same or smaller loss than the full model. The left panel
of Figure 7 also shows that the timely inclusion of expenses-to-sales, investment, return on
equity and Tobin Q’s all lead to significant movements (toward zero) in the distribution of
λt .

The red line in the right panel shows our threshold of 0.05, meaning models above the
threshold have at least a 5% chance of having equal or better loss than the full/dense model.

6We summarize the posterior with respect on the a random month from each of the 41 years in the test set, as
using all firm-year observations in Xt−1 from equation (4.2) to summarize the posterior currently does not work
on a 16GB RAM machine.

7Equation (4.6) is optimized for hundreds of values of λt . Of all the models with p covariates selected into the
model, the chosen model has the minimum loss among all models with p covariates.
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FIG. 6. Splines of most included effects, throughout the test period, 1974–2014. For the given characteristic,
the splines for January in each year are placed in order, yielding a response surface of the rank-transformed
characteristic and time vs. monthly expected returns. The blue/pink color scheme has an increasing percentile
axis. Colors are assigned to buckets of expected returns 50 basis points wide, such that regions of expected returns
between −25 and +25 basis points are white. These basis point changes are with respect to a firm with the median
value of the characteristic in a given year. Hence, the white areas of the plot reflect percentiles of firms that do
not vary significantly from the median firm. The red/green/cyan color scheme flips the percentile axis, so the curve
is viewable and zooms out along the E(R) axis essentially doubling the limits and halving the granularity of the
color spectrum. The spline estimates come from the Splines-24 model fit on 120-month rolling windows, such that
book-to-market is constrained to be nondecreasing and size is nonincreasing.

We select the sparsest model over the threshold which has 25 characteristics. These are given
in Table 4 in order of inclusion: Table 4 shows us that, while the variables from Fama and
French (2016) are present (i.e., investment, book-to-market, size and profitability), they do
not come first; standard unexplained volume and short-term reversal are the first characteris-
tics to enter the sparsest models. Both of these have large effects over the sample, as we saw
in Figure 4.
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FIG. 7. Posterior summary plots over the full test period. The left panel shows the distribution of the difference
in loss for models of differing numbers of characteristics relative to the full model. In red are shown the variables
that, when added (+) or removed (−) from the model, cause significant changes in the loss distribution. The right
panel shows the probabilities of having the same or better loss than the fully-dense model of all 36 predictors.
The red threshold in the right panel is 0.05, and the model immediately above the threshold is selected.

Freyberger, Neuhierl and Weber (2020) find that, out of 62 characteristics, around 13–16
characteristics are selected into their main model over the full period from 1965-2014. Like
us, their selected set includes: investment, size, turnover, short-term reversal, momentum,
intermediate momentum, standard unexplained volume and price to 52-week high. Addition-
ally, their top 13 characteristics include some not in our dataset: percent change in shares
outstanding, log change in the split adjusted shares outstanding, ROC,8 total volatility and
adjusted profit margin.9 The next three that are sometimes included are book-to-market, net

TABLE 4
Selected variables variable for a threshold of 0.05 on P(λt

< 0), ordered by
order of inclusion in the model. These are variables included from the model

that does no worse than the full model with 5% probability. (tie) denotes
variables that come in to the model at the same time. Note that in Figure 7

there is no optimal model with 15 or 24 predictors, thus why we see ties at 15th
and 24th above. The other ties are instances of two variables coming into the
model as another leaves. However, variables that leave the model and do not
come back in for the ideal set of 25 are not included in the overall ranking

1. Standard unexplained volume 14. Free cashflow
2. Short-term reversal 15. Cash-to-assets (tie)
3. Expenses-to-sales 15. Price-to-cost margin (tie)
4. Investment 17. Price to 52-week-high
5. Book-to-market 18. Return on assets
6. Momentum 19. Idiosyncratic volatility
7. Intermediate momentum 20. Profit margin (tie)
8. Size (Market cap) 20. Sales-to-price (tie)
9. Depreciation-to-assets 22. Tobin’s Q (tie)

10. Long-term momentum 22. Return on equity (tie)
11. Net-operating assets 24. Change in PP&E and inventory (tie)
12. Turnover 24. Profitability (tie)
13. Leverage

8ROC is the ratio of market value of equity (ME) plus long-term debt (DLTT) minus total assets to cash and
short-term investments (CHE).

9Our data only contains profit margin, while Freyberger, Neuhierl and Weber (2020) include both profit margin
and “adjusted” profit margin, the latter of which is their chosen variable.
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operating assets and long-term momentum. The methods of Gu, Kelly and Xiu (2020) do not
explicitly select a subset of characteristics, but they do look at how often each characteristic
is used by each of their machine learning methods. They find that, out of 94 characteristics
(and 74 industry indicators), the 10 characteristics that are most important in the 1987–2016
out-of-sample period are, in order: short-term reversal, size, 12-month momentum, change
in six-month momentum, maximum daily return, industry momentum, return volatility, dol-
lar trading volume, sales-to-price and turnover. Another related paper is Han et al. (2019),
and they use a combination lasso approach on 99 characteristics over the time period 1975–
2018. They find that 20–30 characteristics are used in their linear model at any point in time.
Similarly, their top 10 most often included characteristics are, in order: short-term reversal,
tobacco/alcohol/gaming industry indicator, tax income-to-book income ratio, organizational
capital, corporate investment, consecutive quarters with an increase in earnings over the same
quarter in the prior year, sales-to-receivables ratio, convertible debt indicator, price delay and
industry-adjusted cash flow-to-price ratio. Across each of these studies, with similar but dif-
ferent time periods and characteristic sets, we see that short-term reversal, size, investment,
momentum and a measure of volatility are important characteristics. Of note is that book-to-
market, for all its acclaim in the finance literature, is not often a top-ranking characteristic.

The selection procedure also allows us to answer practical questions about individual char-
acteristics. For example, the book-to-market characteristic has a relatively flat partial effect in
the full posterior; see Figure 6. The posterior summary selection procedure can be used here
to identify which groups of characteristics are interacting with book-to-market to produce
this effect. This is done by optimizing the expected loss in expression (4.6) while constrain-
ing the coefficients of the book-to-market basis to be in all reduced models. Optimizing this
loss over a range of penalty parameters produces a set of sparse models, all of which include
the book-to-market characteristic.

Figure 8 displays the book-to-market partial effect from three of the reduced models along
the solution path. “Book-to-market” is the sparsest model; “Book-to-market + some” is the
model containing the book-to-market coefficients and 27 other characteristics, including the
variants of momentum and volatility, size, profitability, investment and leverage. “Book-to-
market + all” includes the remaining characteristics and flattens the partial effect even further.
The characteristics entering this stage are: total assets to size, asset turnover, sales to lagged
total assets, earnings to price, fixed costs to sales, costs of ratio of goods sold plus SG&A to
total assets, return on net operating assets and CAPM beta. These three curves in Figure 8
show us that the first 27 other characteristics are responsible for about half of the dampen-
ing of the magnitude of book-to-market’s effect, and the remaining eight characteristics are
responsible for the other half. Hence, these last eight characteristics work the most to flatten
the book-to-market effect in the full posterior. It should also be noted that the magnitude of
the vertical axis in Figure 8 is fairly small, suggesting that, while book-to-market clearly has
an increasing relationship with returns, the magnitude of that relationship is small.

When are characteristics important? To answer our second question, we implement
the same posterior summarization as mentioned previously, using the same 0.05 threshold,
but now in five year increments. Employing the posterior from the lightly time-discounted
Splines-6 model (δ = 0.998) of the listed January as well as its most current 60 months of
data, we plot the selected covariates in Figure 9. Black cells indicate selected characteristics
and light grey cells represent excluded characteristics. The most visibly striking thing herein
is the lack of predictors selected in 1985. Apparently few characteristics were predictive of
returns in the early 1980s. However, this paper does not put us in a position to make a causal
statement as to why these changes happen, but we will comment on what happens.

In regards to specific characteristics, we first note that standard unexplained volume (suv),
short-term reversal (r2−1), momentum (r12−2) and book-to-market (beme) are the only vari-
ables selected every period. Eight more were selected in every period except the early
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FIG. 8. The partial effect plot of the book-to-market characteristic for three models along the posterior summary
solution path. Each set of betas used to construct the three plots are taken from the expected loss optimization in
expression (4.6) that is used to summarize the full model posterior. As more characteristics are included (gray to
brown to black), the partial effect of book-to-market flattens, suggesting other characteristics (notated in the text)
interact to dampen the book-to-market effect.

1980s: price to 52-week-high (rel_to_high_price), idiosyncratic volatility (idio_vol), interme-
diate momentum (r12−7), net operating assets (noa), turnover (lturnover), size (lme), invest-
ment and debt-to-assets (d2a). In reference to the literature (Jegadeesh and Titman (1993),
Jegadeesh and Titman (2001); Fama and French (2016)) and our smaller set of monotonic
constraints in Splines-6, there appears to be support for size, book-to-market, investment,
momentum and intermediate momentum, but not for profitability (prof).

Figure 10 displays the time evolution of the partial effect functions and provides context for
the time-varying selection results in Figure 9. Note that these dynamic estimates are a novel
feature of our methodology and, along with monotonicity, represent two new contributions of
the paper. Shown are the function evolutions for three characteristics, size (lme), profitability
(prof) and leverage (lev). Note that the shape, location and statistical uncertainty of these
estimates change over time. The location is driven primarily from the evolving intercept term
in the CEF. The uncertainty in the early periods is large, reflecting a smaller number of cross-
sectional observations compared to more recent time periods. Effects that stray away from
constant will carry more influence in the Loss function (4.3) used for selection. Figure 10
show that the size characteristic possesses a strong partial effect for most time periods. In
contrast, profitability remains flat throughout time and, as a consequence, is rarely selected
in Figure 9. The final characteristic is leverage, and, while its effect is initially constant, it
moves toward nonconstant in later periods. We see that it is selected in more recent periods
from Figure 9 as a result.

6. Conclusion. The intersection of flexible modeling in Bayesian statistics and charac-
teristic selection in finance is the focus area of this paper. We develop a statistical method for
modeling returns based on the joint distribution of characteristics as well as provide a way
to identify significant ones in light of statistical uncertainty. Our case study concludes that
thoughtful model construction is important when dealing with finance data. Our conclusions
suggest that model structure (through additivity and monotonicity) provides the dual benefit
of interpretability and similar out-of-sample performance to highly-flexible, but minimally-
interpretable, machine learning methods.
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FIG. 9. Using the same 0.05 threshold shown in Figure 7, we find the sparsest model with at least 0.05 proba-
bility of having no more loss than the fully dense model. This is done in five year increments, ending in January
of the years listed on the horizontal axis. Variables on the vertical axis are ordered according to the frequency of
their appearance. Black cells indicate selection, while light grey cells indicate exclusion from the sparse model.

Specifically, there are three important contributions made by our model in this paper. First,
our flexible and interpretable model is Bayesian and, thus, accounts for the different sources
of uncertainty. Second, the model supplements the flexibility of quadratic splines, as shown in
Freyberger, Neuhierl and Weber (2020), with theoretically-supported monotonic constraints
being one of the least imposing forms of structure. Our results repeatedly show that the ad-
dition of monotonic constraints improves upon a model without such structure. Third, we
modify the monotonic splines of Shively, Sager and Walker (2009) to be time dependent in
order to model the nonlinear yet possibly-dynamic relationships of returns and characteris-
tics. We carefully investigate time variation in our model using the methods of McCarthy
and Jensen (2016) to discount past data. We find evidence for monotonicity even after condi-
tioning on many other available characteristics. This conclusion is supported statistically and
economically by an analysis across 21 model specifications.

The fourth contribution and the second half of this paper is the development of a posterior-
summary selection procedure for our model. Using this new approach, we are able to examine
the practical significance of characteristics and how these effects vary in time. We find about
two dozen firm characteristics that have been important over the last four decades. However,
we note that the timing of the importance of each characteristic varies and, two, that the
magnitude of each characteristic’s effect ranges from negligible to large, and this too can
vary over time. With these methods we find that characteristics with the largest effects on
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FIG. 10. Comparing the time evolution of partial effect functions, every five years from 1975 to 2010. The model
used is the same used for the characteristic selection in Figure 9—Splines-6 with discount factor δ = 0.998. The
characteristics shown are size (lme), profitability (prof) and leverage (lev). For readability, the axes are suppressed
but are on the same scale as Figure 4, and the blue line is r = 0.

expected returns are size, short-term reversal and standard unexplained volume. We find that,
while the specifics of these effects change over time, their importance does not diminish. We
also find that book-to-market, investment and momentum are also important over all time,
although their effect sizes in the full posterior are not nearly as large as the former three.

APPENDIX A: DATA DESCRIPTION

TABLE 5
References for direction of relationship. Papers in the literature were referenced for established directions of
monotonic relationships. The relationship is classified as either positive (monotonic increasing), negative or

unclear. The unclear category contains nonmonotonic variables, variables whose literature is undecided on the
direction as well as variables whose relationship with returns is unclear.

Monotonic
Variable Description Papers direction

a2me Total assets to size Bhandari (1988) Unclear
at Total assets Gandhi and Lustig (2015) Unclear
ato Asset turnover: Sales to lagged net

operating assets
Soliman (2008) Positive

beme Book to market ratio Lewellen (2015) Positive
beta CAPM Beta Lewellen (2015) Negative
c Cash to total assets Palazzo (2012) Positive
cto Sales to lagged total assets Haugen and Baker (1996) Unclear
d2a Depreciation and amortization (DP) to

total assets (AT)
Gorodnichenko and Weber (2016) Unclear



MONOTONIC EFFECTS OF CHARACTERISTICS ON RETURNS 1645

TABLE 5
(Continued)

Monotonic
Variable Description Papers direction

dpi2a Change in PP&E and inventory over
lagged assets (AT)

Lyandres, Sun and Zhang (2007) Negative

e2p Earnings to price Basu (1983) Positive
fc2y Fixed costs to sales D’Acunto et al. (2018) Unclear
free_cf Free cash flow to book equity Hou, Karolyi and Kho (2011) Positive
idio_vol Idiosyncratic volatility from

Fama-French 3 factor model
Ang et al. (2005) Negative

investment Percent change in total assets Cooper, Gulen and Schill (2008) Negative
lev Leverage Bhandari (1988);

Fama and French (1992);
Lewellen (2015)

Positive

lme Size: Market equity defined as stock
price times shares outstanding

Fama and French (1992);
Fama and French (2008);
Lewellen (2015)

Negative

lturnover Volume to shares outstanding
(turnover)

Datar, Naik and Radcliffe (1998) Negative

noa Net-operating assets over lagged
assets (AT)

Hirshleifer et al. (2004) Negative

oa Operating accruals Sloan (1996) Unclear
ol Costs of goods sold + SG&A to total

assets
Novy-Marx (2010) Positive

pcm Price-to-cost margin: Sales minus
costs of goods sold to sales

Bustamante and Donangelo (2017);
Gorodnichenko and Weber (2016);
D’Acunto et al. (2018)

Positive

pm Profit margin: OI after depreciation
over sales

Soliman (2008) Positive

prof Profitability: Gross profitability over
BE

Ball et al. (2015); Lewellen (2015) Positive

q Tobin’s Q Unclear
r12−2 Momentum Lewellen (2015) Positive
r12−7 Intermediate momentum Novy-Marx (2012) Positive
r2−1 Short-term reversal Unclear
r36−13 Long-term reversal De Bondt and Thaler (1985) Unclear
rel_to_high_price Price to 52-week-high price George and Hwang (2004) Positive
rna Return on net operating assets: OI

after depreciation to lagged net
operating assets

Soliman (2008) Positive

roa Return on assets: Income before
extraordinary items to lagged AT

Balakrishnan, Bartov and Faurel
(2010)

Positive

roe Return on equity: Income before
extraordinary items to lagged BE

Haugen and Baker (1996) Positive

s2p Sales to price Fama and French (1992);
Lewellen (2015)

Positive

sga2m Expenses-to-sales: Ratio of expenses
(XSGA) to net sales (SALE)

Unclear

spread_mean Average daily bid-ask spread Chung and Zhang (2014) Unclear
suv Standard unexplained volume Garfinkel (2009) Unclear
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APPENDIX B: STATISTICAL FORMULATION AND COMPUTATION

Model summary. In summary,

r t |θ t ∼ N

(
αt1nt +

K∑
k=1

fkt (xk,t−1), σ
2
t In

)
,

fkt (xk,t−1) = Xk,t−1βkt = Xk,t−1L
−1Lβkt = WktLβkt = Wktγ kt ,

αt ∼ N
(
0,10−2)

,

σ 2
t ∼ U

(
0,103)

,

(γjkt |Ijkt = 1, ·) ∼ N+
(
0, ckσ

2
t

)
,

(γjkt |Ijkt = 0) = 0,

Ijkt ∼ Bn(pjk = 0.2).

Spline conditions. This yields m̀ + ḿ + 3 conditions to satisfy:

0 ≤ f ′(−0.5) = β1 + 2β2(−0.5) + 2β3(−0.5 − x̀1) + · · ·
+ 2βm̀+2(−0.5 − x̀m̀),

0 ≤ f ′(x̀m̀) = β1 + 2β2(x̀m̀) + 2β3(x̀m̀ − x̀1) + · · ·
+ 2βm̀+1(x̀m̀ − x̀m̀−1),

...

0 ≤ f ′(x̀2) = β1 + 2β2(x̀2) + 2β3(x̀2 − x̀1),

0 ≤ f ′(x̀1) = β1 + 2β2(x̀1),

0 ≤ f ′(0) = β1,

0 ≤ f ′(x́1) = β1 + 2βm̀+3(x́1),

0 ≤ f ′(x́2) = β1 + 2βm̀+3(x́2) + 2βm̀+4(x́2 − x́1),

...

0 ≤ f ′(x́ḿ) = β1 + 2βm̀+3(x́ḿ) + 2βm̀+4(x́ḿ − x́1) + · · ·
+ 2βm̀+ḿ+2(x́ḿ − x́ḿ−1),

0 ≤ f ′(0.5) = β1 + 2βm̀+3(0.5) + 2βm̀+4(0.5 − x́1) + · · ·
+ 2βm̀+ḿ+3(0.5 − x́ḿ),

which can be vectorized as a system of m̀ + ḿ + 3 linear inequalities, and these inequalities
serve as our monotonicity conditions.

The MCMC sampler. To sample all parameters at time τ ∈ {1, . . . , T }, iterate through the
following, conditional upon the most recent draws of other parameters:

1. Draw ατ ∼ N(mα, vα):

• mα = vα

σ 2

∑τ
t=1 ωt1′

nt
(r t − ∑K

k=1 Wktγ kτ ) and
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• vα = ( 1
σ 2

∑τ
t=1 ωtnt + 1

10−2 )−1.

2. Draw σ 2
τ ∼ IG(aσ , bσ ), where:

• aσ = 1
2(

∑τ
t=1 ntωt + ∑m

j=1
∑K

k=1 Ijkτ ) − 1 and

• bσ = 1
2(

∑τ
t=1 ωte

′
tet +∑m

j=1
∑K

k=1
γ 2
jkτ

ck
) for the residual et = r t −ατ 1nt −

∑K
k=1 Wkt ×

γ kτ .

3. For coefficients j = 1, . . . ,m + 2 and characteristics k = 1, . . . ,K :
(a) Draw Ijkτ ∼ Bernoulli(p∗

jkτ ) where:

• p∗
jkτ = p̂jkτ

p̂jkτ +(1−pjk)
,

• p̂jkτ = 2pjkc
− 1

2
k v

1
2
γjkτ exp{ 1

2σ 2vγjkτ

m2
γjkτ

}[1 − �(0|mγjkτ
, σ 2vγjkτ

)],
• mγjkτ

= vγjkτ

∑τ
t=1 ωte

′
(jk)twjkt ,

• vγjkτ
= (

∑τ
t=1 ωtw

′
jktwjkt + 1

ck
)−1,

• e(jk)t = r t − ατ 1nt − ∑
� �=k W�tγ τ � − ∑

� �=j w�ktγ�kτ , the residual assuming
γjkτ = 0.

(b) If Ijkτ = 1 then draw γjkτ ∼ N+(mγjkτ
, σ 2vγjkτ

), else γjkτ = 0.

APPENDIX C: MAIN RESULTS OVER DIFFERENT SUBPERIODS

Here, we present the results of Table 2 with two subperiods of 20 years, 1974–1994 and
1995–2014, instead of three subperiods.

TABLE 6
Out-of-sample model performance when forecasting monthly returns over over the January 1974 to December

1994, January 1995 to May 2014 periods. Out-of-sample R2 is calculated, as done in Gu, Kelly and Xiu (2020),
and given in percentage points. Sharpe ratios use the returns from equal-weighted decile portfolios, long on the

firms with forecasted in the top decile and shorting the bottom decile. Bolded values indicate the best two models
for a given window length

OOS R2 Sharpe ratio

Window size (months) Window size (months)

All 120 60 36 All 120 60 36

1974–1994
OLS 0.64 0.48 0.39 0.11 3.42 3.33 3.05 2.88
Random Forest 0.78 0.65 0.58 0.29 4.33 4.25 3.58 3.06
BART 1.53 1.30 1.10 0.75 4.49 4.41 4.29 4.03
Splines-0 1.00 0.86 0.76 0.44 4.28 4.25 4.05 3.83
Splines-6 1.00 0.86 0.78 0.45 4.34 4.28 4.09 3.82
Splines-24 0.91 0.77 0.71 0.42 4.32 4.35 4.13 3.85

1995–2014
OLS 0.55 0.43 −0.33 −0.95 1.84 1.67 1.01 0.76
Random Forest 0.73 0.62 −0.10 −0.84 2.33 1.79 1.06 0.61
BART 1.05 0.80 −0.25 −1.33 2.67 2.51 1.90 1.39
Splines-0 0.80 0.59 −0.04 −0.49 2.22 2.19 1.73 1.42
Splines-6 0.81 0.59 −0.04 −0.45 2.24 2.19 1.75 1.50
Splines-24 0.76 0.63 0.03 −0.36 2.33 2.44 1.83 1.51
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