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Motivating problem: Charles’ dilemma

He'd like to invest some money in the market.

He's heard passive funds are the way to go.
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4 Charts That Explain Why Active Funds Can't Beat Passive Funds

Fnrhas - .lin 14 2017
OPINION
Index Funds Still Beat ‘Active’ Portfolio Management

By Burton G. Malkiel

Chinese investors pick passive investing for long-t
China Daily - Jun 4, 2017
Retail investors are increasingly choosing passive investin

There is no bette
Appeared in the Ju

Investors Now Have More than $4 Trillion in Exchange-Traded Products

By Ben Eisen

The amount of money in exchange-traded funds and products topped $4 trillion globally last mont]
rise of so-called passive investing. 5



But ... d thousands of passive funds
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The context for this talk

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity.



The context for this talk

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity.

What's typically done? (broadly speaking)

= Bayesian: Shrinkage prior design.

= Frequentist: Penalized likelihood methods.

Common theme? Sparsity and inference go hand in hand.



Separating priors from utilities

Our view: Subset selection is a decision problem. We need a
suitable loss function, not a more clever prior.



Separating priors from utilities

Our view: Subset selection is a decision problem. We need a

suitable loss function, not a more clever prior.

This leads us to think of selection in a “post-inference
world” by comparing models (or in this case, portfolios)
based on utility.*

*sparsity and statistical uncertainty play a key role in this
post-inference exercise.



Utility-based selection: Primitives

Let w; be a portfolio decision, \; be a complexity parameter, ©; be
a vector of model parameters, and /N?’t be future data.

1. Loss function L(w, /~R’t) — measures utility.
2. Complexity function ®(\;, w;) — measures sparsity.
3. Statistical model M(©;) — characterizes uncertainty.

4. Regret tolerance x — characterizes degree of comfort
from deviating from a “target decision” (in terms of
posterior probability).




Utility-based selection: Procedure

= Optimize E[£(ws, R:) + ®(\s, wt)], where the
expectation is over p(R;, ©; | R).

= Calculate regret versus a target wj for decisions
indexed by A:.

— p(W)\tv W, ’T?f) = E(W)\ﬂ r?f) - ﬁ(”@? ’T?t)

= Select wj, as the decision satisfying the tolerance.

— 7, = Plp(wy,, W}, :E\’t) < 0] (satisfaction probability)

— Select wyr s.t. mxr > K




Example I: Long-only ETF investing

= Let I~?t be a vector of future ETF returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: L(w, R;) = — log <1 +N W’{:N’?’,_f)
2. Complexity: Number of funds in portfolio (think [lwtl|,)
3. Model: DLM for R, parameterized by (jit, ¢ | Dr_1)



Example I: Long-only ETF investing

= Let I~?t be a vector of future ETF returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: L(w, R;) = — log <1 +N W’{:N’?’,_f)
2. Complexity: Number of funds in portfolio (think [lwtl|,)
3. Model: DLM for R, parameterized by (jit, ¢ | Dr_1)

Data: Monthly returns on 25 ETFs from 1992-2016.
Target: Fully invested (dense) portfolio.



Step 1: Constructing portfolio decisions

= Portfolio decisions have < 5 funds.

= > 25% in SPY

Decisions are found by minimizing expected loss for each time t.

Results in a choice of 12,950 decisions to choose among!!



Step 2: Compute and examine p for optimal decisions

Regret (difference in loss)

-0.005  0.000 0.005 0.010 0.015

-0.010

- E[Regret]
o Th °

t

A—decisions ordered by increasing satisfaction probability — March 2002

0.55

0.50

0.45

0.40

probability

10



Step 3: Select decisions based on

satisfaction threshold

Dates | SPY EZU EWU EWY EWG EWJ OEF IVV IVE EFA IWP IWR IWF IWN IWM IYW IYR RSP
2003 | 25 - 88 - - - - - . . . . . 83 - . . 83
s |8 = ® = o W @B s s & &5 = = = = = (G2
2005 | 25 - 25 - 62 13 - - - - - - - . . . 30 -
s |2 = = = 682 B = = o = = o @8 = @R s = =
2007 | 75 - - 25 - - o oL Lo
e |8 = = < B8 # o = o W o s o o o & o =
2000 | 30 - - 62 - 4 - - - 17 63 - - - - - - -
2010 |75 - - 83 - - - - - - 83 - - - - 83 - -
2011 | 5% - 25 - - - - - - . 83 - - - - 83 - -
2012 | 20 83 - - - 54 - - - . . . . _ 83 - -
e @ = = = s O = = s s B8 s s s o B8 o =
2014 | 25 - - - - 3 26 - - 62 - 62 - - - - - -
2015 | 45 - - - - 39 - - 83 - 83 - - - - o - .
2016 | 3 - - - - 4 - 17 - - 83 - - - - - - .

Selected decisions for

r = 45% threshold.
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What about other models / variable selection tasks?

12



Example Il: Monotonic function estimation

Goal: Describe expected returns with firm characteristics or

accounting measures (size, book-to-market, momentum, ...).

[E[Rit | Xit—l] - f(xit—l)

R;+: excess return of firm / at time t
Xjt_1: vector of characteristics of firm i at time t
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Example Il: Monotonic function estimation

Goal: Describe expected returns with firm characteristics or

accounting measures (size, book-to-market, momentum, ...).

[E[Rit | Xit—l] - f(xit—l)

R;+: excess return of firm / at time t
Xjt_1: vector of characteristics of firm i at time t

We would like to learn f
and which X%_;’s matter!
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Portfolio sorts are one way to understand f ...

Jegadeesh and Titman (2001)

Table T
Momentum Portfolio Returns
This table reports the monthly returns for momentum portfolios formed based on past six-month returns and held for six months. P1 is the
equal-weighted portfolio of 10 percent of the stocks with the highest returns over the previous six months, P2 is the equal-weighted portfolio of
the 10 percent of the stocks with the next highest returns, and so on. The “All stocks” sample includes all stocks traded on the NYSE, AMEX,
or Nasdaq excluding stocks priced less than 35 at the beginning of the holding period and stocks in the smallest market cap decile (NYSE size
decile cutoff). The “Small Cap” and “Large Cap” subsamples comprise stocks in the “All Stocks” sample that are smaller and larger than the
median market cap NYSE stock respectively. “EWI” is the returns on the equal-weighted index of stocks in each sample.

Al Stocks Small Cap Large Cap

1965-1998 1965-1989  1990-1998 1965-1998 1965-1989 1990-1998 1965-1998 1965-1989  1990-1998

P1 (Past winners) 165 163 1.69 170 1.69 173 156 152 1.66
P2 139 141 132 145 1.50 133 125 1.24 127
P3 128 1.30 121 137 142 123 112 110 119
P4 119 121 113 126 1.34 1.05 1.10 1.07 1.20
P5 117 118 112 126 1.33 1.06 105 1.00 119
P6 113 115 1.08 119 1.96 101 109 1.05 1.20
P7 111 112 1.09 114 1.20 0.99 109 1.04 123
P8 105 1.05 1.03 109 117 0.89 104 1.00 117
P9 0.90 0.94 0.77 0.84 0.95 0.54 1.00 0.96 1.09
P10 (Past losers) 0.42 0.46 0.30 0.28 0.35 0.08 0.70 0.68 0.78
P1-P10 123 117 1.39 142 1.34 165 0.86 0.85 0.88
# statistic 6.46 4.96 471 741 5.60 5.74 434 355 2.59
EWI 109 110 1.04 113 119 0.98 103 1.00 112

14



Challenges and a solution

= X;+—1 is multidimensional.

= Even if we had only 12 characteristics and sorted into quintiles
along each dimension, that requires constructing
512 — 244140625 portfolios!

We propose modeling the CEF using additive quadratic splines
(with monotonicity constraints and time variation):

K

E[Re | Xit-1] = ot + > giee(Xkie—1)
k=1

15



Why monotonicity?

Finance data is noisy — a structured model is important here.

Jan 1964 - Jan 1978
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Expected Return

Estimated functions at January 1978
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monotonicity is enforced by linear constraints on spline coefficients
17



Expected Return

How does the function vary over time?

Jan 1978 Jan 2014
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dynamics are modeled by likelihood discounting, McCarthy and Jenson (2016)
18



Dynamics of other characteristics

Short-term reversal Size

E(R) E(R)

q 0. q 0.8
Percentile 1 Year Percentile 1 Year

Partial effects of characteristics change over time
19



A model with 36 characteristics - January 1978
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Utility-based selection can be used here, too!

Primitives:
1. Loss: E(ﬁt, At7 @t) = %(ﬁt — Xt_]_At)T(Iit — Xt—lAt)
2. Complexity: Group lasso penalty on the spline basis

coefficients A;
3. Model: Dynamic monotonic quadratic splines

3 9 4 5
1 o |
@ | o
- © s <« | -
Posterior summary plots L] 2 S :
t ST
for spline covariate selec- i sl .
. o | o 7 .
tion ° a J :
L L L L S TT T T T T
0 10 20 30 0O 10 20 30
Number of Predictors Number of Predictors
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A model with 36 characteristics - January 1978
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Concluding thoughts, and thanks!

= Passive investing and monotonic function estimation

approached using new posterior summarization technique.

= Utility functions can enforce inferential preferences that

are not prior beliefs.

= Statistical uncertainty should be used as a guide to avoid

overfitting.

23



Extra slides



What is innovative here?

Portfolio selection literature typically focuses on one of the following:

= Modeling inputs ©; = (pt, £t): Jobson (1980), Ledoit and Wolf
(2007), Garlappi (2007), DeMiguel (2009) ...

= Optimizing in a clever way: Jagananathan (2002), Brodie (2009),
Fan (2012), Fastrich (2013) ...
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What is innovative here?

Portfolio selection literature typically focuses on one of the following:

= Modeling inputs ©; = (pt, £t): Jobson (1980), Ledoit and Wolf
(2007), Garlappi (2007), DeMiguel (2009) ...

= Optimizing in a clever way: Jagananathan (2002), Brodie (2009),
Fan (2012), Fastrich (2013) ...

Utility-based selection incorporates both modeling and
optimization through analysis of p(w,,, W/, R;).

25



Comparing portfolios to their targets out of sample

out-of-sample statistics

Sharpe mean
. s.d.
ratio return
sparse 0.40 14.98 6.02
dense 0.45 14.41 6.47

Ex ante equivalence appears to carry over ex post.

There appear to be little ex post benefits of diversification.

26



Step 1: The expected loss

L(w) = Fo,Epo, |~ l0g(L + TIL whRE) + O(X, wo)|
= 1 8 2 62
~ Eox, [—zﬁzlmf + ST Wh[RERL+ 00 )

g T Wt TS we + O(Ap, we).

The past returns R; enter into our utility consideration by defining
the posterior predictive distribution.

27



A dynamic regression model giving moments (., > ,)

Ri=(B)TRl +¢i, ei~ N(0,1/90), Bi=Biy+wWs, Wi~ Ty (0,WH),
By | Do~ Ty(my, G), 6| Do~ Ga(np/2,dy/2),
Bil Doy~ Ty (Mg, R,  Ri= Ciy/dp,
¢t | Deo1 ~ Ga(8ent_1/2,6cd;_1/2),

RE =t +ve, ve~N(O,XF),  pr=pfi+Q Qe ~ N(O, Wi, XF),
(1§, 5 | Do) ~ NW,!(mo, Co, o),
(0, = | Deox) ~NWL - (me1, R, Se1),  Re= Ce1/dc

Ht = 51:T HtF
s F/
Y= B:X, B + v,

— Moments are used in the expected loss minimization

— Predictive distribution is used to compute p
28



Formulating as a convex penalized optimization

Define ¥ = LLT.

1
L(w)=—-w'n+ inva A vl

1
= S ILTw— LAl + A wl;

Now, we can solve the optimization using existing algorithms, such
as lars of Efron et. al. (2004).

29



Example: Gross exposure complexity function

= Let l~?t be a vector of N future asset returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: — log (1 B Wflz?lt(>

2. Complexity: A¢ |[well;

3. Model: DLM for R; parameterized by (¢, ¥+)
4

. Regret tolerance: Let's consider several k's.
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Example: Gross exposure complexity function

= Let l~?t be a vector of N future asset returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: —log (1 + Zivzl Wflz?{f>

2. Complexity: A¢||welly

3. Model: DLM for R; parameterized by (fi¢, Z+)
4

. Regret tolerance: Let's consider several k's.

Assume the target is fully invested (dense) portfolio.

Data: Returns on 25 ETFs from 1992-2016.
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Optimal decisions lined up for a snapshot in time

After optimizing expected loss for 500 \;'s, we compute regret
p(wy,, wt, R (left axis) and 7y, (right axis).

0.50

E[Regret] -
m,

0.015
]

0.010
|
T T
0.46 0.48
probability

T
0.44

Regret (difference in loss)
0.005
|

T
0.42

0.000

T
0.40
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Regret-based selection: lllustration

d) : sparse decisions, d* : target decision.
7y = P[p(dy, d*, ¥) < 0]: probability of not regretting A-decision.

@ Tlecision 2

sparse decisions
— target

decision 2

decision 1
decision 1

Density

0.15 0.20 0.25

0.4 0.5 —0.05 0.00 0.05 0.10
Regret (difference in loss)

82

0.0



Ex ante SRiaget — SRyecision €volution

— dense portfolio as target

—— SPY as target
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UBS for Monotonic function estimation

The regression model is:

K
Rit = a; + Z fut(Xkit—1) + €ir,  €ir ~ N(O, 0'2)
k=1

Insight — with quadratic splines for all fi;, this can be written as a

predictive regression:
R¢~ N (Xt—lBtv J?”m)

where
K1 = [lnt Xt—l} , Br= [Oét Bt]

X1 is matrix of size n; x K(m+2), B, is vector of size K(m + 2).
Therefore, each firm is given a row in X;_1, and each m + 2 block

of B, corresponds to the coefficients on the spline basis for a
particular characteristic, k. 34



UBS for Monotonic function estimation

We can now proceed as Hahn and Carvalho (2015). The loss
function is the negative log density of the regression plus a penalty
function ® with parameter \:. Also, let the “sparsified action” for
the coefficient matrix A;.

. 1 - .
‘Ct(Rh At7 @t) — E(Rt - Xt—lAi.“)T(Rt‘ - Xt—lAt) + cb()\tv At)

After integrating over p(R;, ©;), we obtain:

Lx.(A¢) = th—lAt - Xt—1§tH§ + ®(\, Ar)

85



Modeling Time-dynamics: McCarthy and Jensen (2016)

= Power-weighted likelihoods let information decay over time
= To estimate parameters at time 7, let §; = 0.99" ¢, such that

01 < 9y < ... <4, =1, the likelihood at time 7 € {1, ..., T} is

T

P(Rl, 000 RT‘@T) = H P(Rt‘@r)ét-
t=1

36



Model Summary

K 0t
Re|- ~ N (atl,,t + Z fkt(Xk,t—l)) U?’ﬂ)

k=1
Fre(Xk t—1) = Xk t—18ke = Xk e—1L 7 LBke = Wi vk
o ~ N(0,1072)
o? ~ U(0,10%)
(el ke = 1,0%) ~ N4 (0, ckary)
(Vikt| lje = 0) = 0
like ~ Bn(pj = 0.2).
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Data

Freyberger, Neuhierl, and Weber (2017)'s dataset:

= CRSP monthly stock returns for most US traded firms

= 36 characteristics from Compustat and CRSP, including size,

momentum, leverage, etc.

= July 1962 - June 2014

Presence and direction of monotonicity is determined by important

papers in the literature.
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