

Regret-based Selection

David Puelz (UT Austin) Carlos M. Carvalho (UT Austin) P. Richard Hahn (Chicago Booth)

May 27, 2017

Two problems

1. Asset pricing: What are the fundamental dimensions (risk factors) of the financial market?

Two problems

1. Asset pricing: What are the fundamental dimensions (risk factors) of the financial market?

2. Investing: Among thousands of choices, which passive funds should I invest in?

Two problems

1. Asset pricing: What are the fundamental dimensions (risk factors) of the financial market?

2. Investing: Among thousands of choices, which passive funds should I invest in?

How are they connected?

The context for this talk

Both problems can be studied using variable selection techniques from statistics.

Separating priors from utilities

Our view: Subset selection is a decision problem. We need a suitable loss function, **not** a more clever prior.

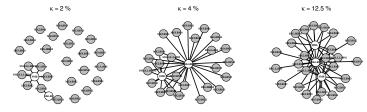
Separating priors from utilities

Our view: Subset selection is a decision problem. We need a suitable loss function, **not** a more clever prior.

This leads us to think of selection in a "post-inference world" by comparing models based on regret.

Where we are headed ...

► Risk factor selection in SUR models



► Sparse dynamic portfolios

Date	DIA	IWD	IWB	IWN	IWM	IYR
	Dow Jones	Value	Large	Small	Small value	Real estate
2002	-	21.6	23.7	2.55	2.83	49.3
2003	_	18.4	18.2	-	-	63.3
2004	_	14.1	22.3	-	-	63.6
2005	-	31.2	35.2	-	-	33.6
2006	-	32.7	40.6	-	-	26.7

Regret-based selection: Primitives

Let d be a decision, λ be a complexity parameter, Θ be a vector of model parameters, and \tilde{Y} be future data.

- 1. Loss function $\mathcal{L}(d, \tilde{Y})$ measures utility.
- 2. Complexity function $\Phi(\lambda, d)$ measures sparsity.
- 3. Statistical model $\Pi(\Theta)$ characterizes uncertainty.
- Regret tolerance κ characterizes degree of comfort from deviating from a "target decision" (in terms of posterior probability).

Regret-based selection: Procedure

- ▶ Optimize expected loss (1) + complexity (2). The expectation is over $p(\tilde{Y}, \Theta \mid \mathbf{Y})$ (3).
- ▶ Calculate regrets versus a target d^* for decisions indexed by λ .

$$ightarrow \;
ho(d_{\lambda},d^{*}, ilde{Y}) = \mathcal{L}(d_{\lambda}, ilde{Y}) - \mathcal{L}(d^{*}, ilde{Y})$$

▶ Select d_{λ}^* as the decision satisfying the regret tolerance.

$$\rightarrow \pi_{\lambda} = \mathbb{P}[\rho(d_{\lambda}, d^*, \tilde{Y}) < 0]$$

$$ightarrow$$
 Select d_{λ}^{*} s.t. $\pi_{d_{\lambda}^{*}} > \kappa$ (3,4)

Which risk factors matter?

The Factor Zoo (Cochrane, 2011)

- ▶ Market
- ▶ Size
- ▶ Value
- ► Momentum
- Short and long term reversal
- ▶ Betting against β
- Direct profitability

- Dividend initiation
- ► Carry trade
- ► Liquidity
- ► Quality minus junk
- ► Investment
- Leverage
- ▶ ...

The Factor Zoo (Cochrane, 2011)

- ▶ Market
- ▶ Size
- ▶ Value
- ► Momentum
- Short and long term reversal
- ▶ Betting against β
- Direct profitability

- Dividend initiation
- ► Carry trade
- ► Liquidity
- Quality minus junk
- ► Investment
- ▶ Leverage
- ▶ ...

The setup for determining important factors

Let the return on test assets be R, and the return on factors be F.

$$R = \gamma F + \epsilon$$
, $\epsilon \sim N(0, \Psi)$

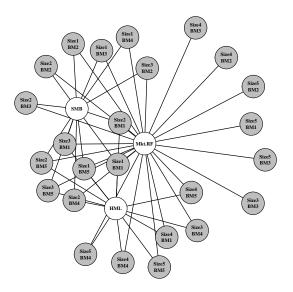
Primitives:

- 1. Loss: $\mathcal{L}(\gamma, \tilde{R}, \tilde{F}) = -\log p(\tilde{R}|\tilde{F})$
- 2. Complexity: $\Phi(\lambda, \gamma) = \lambda \|\gamma\|_1$.
- 3. Model: R|F with normal errors and conjugate g-priors and F via gaussian linear latent factor model.
- 4. Regret tolerance: Let's consider several κ 's.

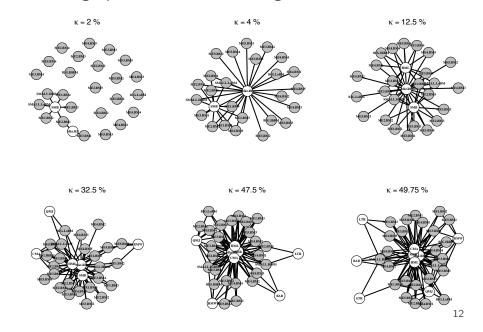
Assume the target is the $\lambda = 0$ model.

Factor selection graph ($\kappa = 12.5\%$)

R: 25 Fama-French portfolios, F: 10 factors from finance literature



Selected graphs under different regret tolerances κ



∃ thousands of investment opportunities

BLACKROCK

The setup for sparse passive investing

- ▶ Let \tilde{R}_t be a vector of N future asset returns.
- ▶ Let w_t be the portfolio weight vector (decision) at time t.
- ▶ We use the log cumulative growth rate for our utility!

Primitives:

- 1. Loss: $-\log\left(1+\sum_{k=1}^{N}w_t^k\tilde{R}_t^k\right)$
- 2. Complexity: $\lambda_t \| \mathbf{w}_t \|_1$
- 3. Model: DLM for \tilde{R}_t parameterized by (μ_t, Σ_t)
- 4. Regret tolerance: $\kappa = 55\%$.

Assume the target is fully invested (dense) portfolio.

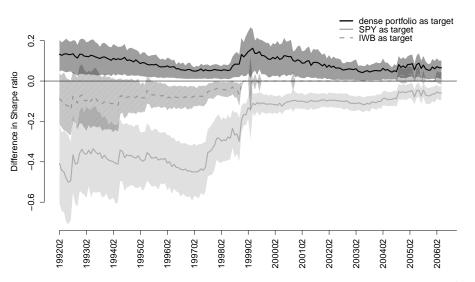
Static regret tolerance \rightarrow dynamic portfolio decisions

Data: Returns on 25 ETFs from 1992-2016. $\kappa = 55\%$ decision.

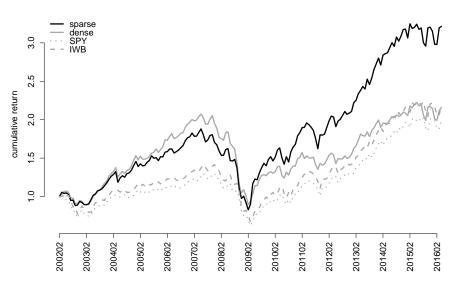
Date	DIA	IWD	IWB	IWN	IWM	IYR
	Dow Jones	Value	Large	Small	Small value	Real estate
2002	_	21.6	23.7	2.55	2.83	49.3
2003	_	18.4	18.2	-	-	63.3
2004	_	14.1	22.3	-	-	63.6
2005	_	31.2	35.2	-	-	33.6
2006	_	32.7	40.6	-	-	26.7
2007	-	41.8	38.4	-	-	19.8
2008	_	43.8	39.3	-	-	16.9
2009	-	-	100	-	-	-
2010	-	-	100	-	-	-
2011	-	-	100	-	-	-
2012	_	-	100	-	-	-
2013	-	-	100	-	-	-
2014	-	-	100	-	-	-
2015	100	-	-	-	-	-
2016	86.7	-	9.59	-	-	3.72

Ex ante " $SR_{target} - SR_{decision}$ " evolution

Data: Returns on 25 ETFs from 1992-2016. $\kappa = 55\%$ decision.



Ex post performance of the $\kappa = 55\%$ decision



Last slide

- ▶ Passive investing and factor selection for asset pricing models approached using new variable selection technique.
- Utility functions can enforce inferential preferences that are not prior beliefs.
- ► Variable selection in SUR models with random predictors. Bayesian Analysis (2017). Sparse dynamic portfolios with regret-based selection. Submitted (2017).
- ▶ Thanks!

Extra slides

A complicated posterior!

$$\begin{split} \tilde{R}_{t}^{i} &= (\beta_{t}^{i})^{T} \tilde{R}_{t}^{F} + \epsilon_{t}^{i}, \qquad \epsilon_{t}^{i} \sim \mathsf{N}(0, 1/\phi_{t}^{i}), \\ \beta_{t}^{i} &= \beta_{t-1}^{i} + w_{t}^{i}, \qquad w_{t}^{i} \sim \mathsf{T}_{n_{t-1}^{i}}(0, W_{t}^{i}), \\ \beta_{0}^{i} &\mid D_{0} \sim \mathsf{T}_{n_{0}^{i}}(m_{0}^{i}, C_{0}^{i}), \\ \phi_{0}^{i} &\mid D_{0} \sim \mathsf{Ga}(n_{0}^{i}/2, d_{0}^{i}/2), \\ \beta_{t}^{i} &\mid D_{t-1} \sim \mathsf{T}_{n_{t-1}^{i}}(m_{t-1}^{i}, R_{t}^{i}), \qquad R_{t}^{i} &= C_{t-1}^{i}/\delta_{\beta}, \\ \phi_{t}^{i} &\mid D_{t-1} \sim \mathsf{Ga}(\delta_{\epsilon} n_{t-1}^{i}/2, \delta_{\epsilon} d_{t-1}^{i}/2), \\ \tilde{R}_{t}^{F} &= \mu_{t}^{F} + \nu_{t} \qquad \nu_{t} \sim \mathsf{N}(0, \Sigma_{t}^{F}), \\ \mu_{t}^{F} &= \mu_{t-1}^{F} + \Omega_{t} \qquad \Omega_{t} \sim \mathsf{N}(0, W_{t}, \Sigma_{t}^{F}), \\ (\mu_{0}^{F}, \Sigma_{0}^{F} \mid D_{0}) \sim \mathsf{NW}_{n_{0}}^{-1}(m_{0}, C_{0}, S_{0}), \\ (\mu_{t}^{F}, \Sigma_{t}^{F} \mid D_{t-1}) \sim \mathsf{NW}_{\delta-n_{t-1}}^{-1}, (m_{t-1}, R_{t}, S_{t-1}), \qquad R_{t} = C_{t-1}/\delta_{c}, \end{split}$$

Dynamic regret-based selection

Assume N asset returns follow the model: $\tilde{R}_t \sim \Pi(\mu_t, \Sigma_t)$

▶ Specifically, let the covariates be the five Fama-French factors, $R_t^F \sim \mathcal{N}(\mu_t^F, \Sigma_t^F)$, so that:

$$\mu_t = \beta_t^T \mu_t^F$$

$$\Sigma_t = \beta_t \Sigma_t^F \beta_t^T + \Psi_t$$

▶ Given μ_t and Σ_t , make portfolio decision for time t+1.

Seemingly unrelated regressions

Replace R with generic response vector Y and F with generic covariate vector X:

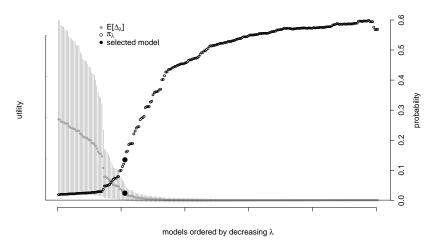
$$R \rightsquigarrow Y \text{ and } F \rightsquigarrow X$$

$$Y_j = \beta_{j1}X_1 + \cdots + \beta_{jp}X_p + \epsilon_j, \quad \epsilon \sim \mathsf{N}(0, \Psi), \quad j = 1, \cdots, q$$

The proposed framework permits variable selection in SUR models with random predictors!

Posterior summary plot

$$\underline{\Delta_{\lambda}} \equiv \mathcal{L}(\gamma_{\lambda}^{*}, \Theta, \tilde{R}, \tilde{F}) - \mathcal{L}(\gamma_{0}^{*}, \Theta, \tilde{R}, \tilde{F}), \qquad \underline{\pi_{\lambda}} \equiv P(\Delta_{\lambda} < 0)$$

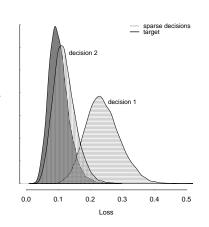


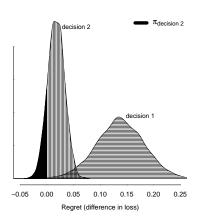
 π_{λ} = probability that λ -model is no worse than the dense model.

Regret-based selection: Illustration

 d_{λ} : sparse decisions, d^* : target decision.

 $\pi_{\lambda} = \mathbb{P}[\rho(d_{\lambda}, d^*, \tilde{Y}) < 0]$: probability of not regretting λ -decision.





Ex ante regret evolution

Data: Returns on 25 ETFs from 1992-2016. $\kappa = 55\%$ decision.

