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Motivating problem: Charles’ dilemma

He'd like to invest some money in the market.

He's heard passive funds are the way to go.
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4 Charts That Explain Why Active Funds Can't Beat Passive Funds
Fnrhaa - .liin 14 2017

OPINION
Index Funds Still Beat ‘Active’ Portfolio Management

By Burton G. Malkiel

Chinese investors pick passive investing for long-t
China Daily - Jun 4, 2017
Retail investors are increasingly choosing passive investin

There is no bette
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Investors Now Have More than $4 Trillion in Exchange-Traded Products

By Ben Eisen

The amount of money in exchange-traded funds and products topped $4 trillion globally last mont]
rise of so-called passive investing. 5
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The context for this talk

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity.



The context for this talk

This problem (and many others like it!) can be studied using
variable selection techniques from statistics to induce sparsity.

What's typically done? (broadly speaking)

= Bayesian: Shrinkage prior design.

= Frequentist: Penalized likelihood methods.

Common theme? Sparsity and inference go hand in hand.



Separating priors from utilities

Our view: Subset selection is a decision problem. We need a
suitable loss function, not a more clever prior.



Separating priors from utilities

Our view: Subset selection is a decision problem. We need a
suitable loss function, not a more clever prior.

This leads us to think of selection in a “post-inference
world” by comparing models (or in this case, portfolios)
based on utility.*

*sparsity and statistical uncertainty play a key role in this
post-inference exercise.



Utility-based selection: Primitives

Let w; be a portfolio decision, \; be a complexity parameter, ©; be
a vector of model parameters, and IN?t be future data.

1. Loss function L(w, /~R’t) — measures utility.
2. Complexity function ®(\;, w;) — measures sparsity.
3. Statistical model M(©;) — characterizes uncertainty.

4. Regret tolerance x — characterizes degree of comfort
from deviating from a “target decision” (in terms of
posterior probability).




Utility-based selection: Procedure

= Optimize E[£(ws, R:) + ®(\s, wy)], where the
expectation is over p(R:, ©; | R).

= Calculate regret versus a target wj for decisions
indexed by \;.

— p(W)\ﬂ V‘/tkv ’T?f) - ‘C(W)\tﬂ r?f) - ‘C(Mftk? F?t)

» Select wj, as the decision satisfying the tolerance.

— 7, = Plp(wy,, w}, R’t) < 0] (satisfaction probability)

—  Select wyr s.t. T > K




What is innovative here?

Portfolio selection literature typically focuses on one of the following:

» Modeling inputs ©; = (pt, Xt): Jobson (1980), Ledoit and Wolf
(2007), Garlappi (2007), DeMiguel (2009) ...

= Optimizing in a clever way: Jagananathan (2002), Brodie (2009),
Fan (2012), Fastrich (2013) ...



What is innovative here?

Portfolio selection literature typically focuses on one of the following:

» Modeling inputs ©; = (pt, Xt): Jobson (1980), Ledoit and Wolf
(2007), Garlappi (2007), DeMiguel (2009) ...

= Optimizing in a clever way: Jagananathan (2002), Brodie (2009),
Fan (2012), Fastrich (2013) ...

Utility-based selection incorporates both modeling and
optimization through analysis of p(w,,, W/, R;).



Example I: Long-only ETF investing

= Let I~?t be a vector of future ETF returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: —log <1 +3N, W’{f‘?’{)
2. Complexity: Number of funds in portfolio (think [lwtl|,)
3. Model: DLM for R, parameterized by (s, X+ | Ds_1)



Example I: Long-only ETF investing

= Let I~?t be a vector of future ETF returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: —log <1 +3N, W’{f‘?’{)
2. Complexity: Number of funds in portfolio (think [lwtl|,)
3. Model: DLM for R, parameterized by (s, X+ | Ds_1)

Data: Monthly returns on 25 ETFs from 1992-2016.
Target: Fully invested (dense) portfolio.



Step 1: Constructing portfolio decisions

= Portfolio decisions have < 5 funds.

= > 25% in SPY

Decisions are found by minimizing expected loss for each time t.
Results in a choice of 12,950 decisions to choose among!!

10



Step 1: The expected loss

L(w) = Eo,Ex 0, [— log(1 + =N wkRK) + d(\g, wr)
- 1 N
~ Eox, [—zﬁ:mf + ST W [RERL+ 00 )

g T Wt TS we + O(Ap, we).

The past returns R; enter into our utility consideration by defining
the posterior predictive distribution.

11



Step 2: Compute and examine p for optimal decisions

Regret (difference in loss)
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-0.010
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A—decisions ordered by increasing satisfaction probability — March 2002
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Step 3: Select decisions based on

satisfaction threshold

Dates | SPY EZU EWU EWY EWG EWJ OEF IVV IVE EFA IWP IWR IWF IWN IWM IYW IYR RSP
2003 | 25 - 88 - - - - - . . . . . 83 - - . 83
s |8 = ® = o W @B s o & s = =& = = = @2
2005 | 25 - 25 - 62 13 - - - - - - - . . . 30 -
s @ = = = 682 B = = o s = = @8 = @R s o =
2007 | 75 - - 25 - o oo Lo
e |4 = = < B8 @ o = o W o s o o o & & =
a |8 = = @8 - M = s o W @ s s & = o o =
2010 |75 - - 83 - - - - - - 83 - - - - 83 - -
s |8 = B = o & =& s o s B8 s = o o B8 o -
2012 | 29 83 - - - s&4 - - - - - . . . 83 - -
e |2 = = = o M = s o s B8 s = o o B8 o =
s |8 = = = o & B o o BB BR = & = o o 9«
e |8 = = = = @ = = 88 c B8 = = & = = o =
ME |8 = = = o & = I s = B8 s = & & o o 9«

Selected decisions for

r = 45% threshold.
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What happens when & is varied?

SRR
nowm
SO - 9102
Luy
+ §T0Z
<] L
3 7102
<
W - €102
& - 2102
.% - TT0Z
S|
W«« - 0TOZ
>
WN + 6002
+ 8002
2002
+ 9002
+ S002
+ #7002
+ €002
V\V
— L 200z
[ T T 1
#00'0 200'0 0000 ¥00°0- 800°0-

(sso| ul @2uaiayip) 10160y paroadxy

14

Higher satisfaction threshold = lower expected regret!



Comparing portfolios to their targets out of sample

out-of-sample statistics

Sharpe <d mean

ratio return

sparse 0.40 14.98 6.02
dense 0.45 14.41 6.47

Ex ante equivalence appears to carry over ex post.

There appear to be little ex post benefits of diversification.

15



What about other models / variable selection tasks?

16



Example II: Seemingly unrelated regressions

Y=08X+¢ e~ NO,WV)

= Yis g length response vector
= X is p length covariate vector
= (s g x p coefficient matrix

= WV is non-diagonal matrix

finance: asset pricing, operations management: supply/demand
structural equations, marketing: consumer preferences, economics:

capital structure, firm composition, macroeconomic indicators.

17



Example II: Seemingly unrelated regressions

Y=08X+¢ e~ NO,WV)

= Yis g length response vector
= X is p length covariate vector
= (s g x p coefficient matrix

= WV is non-diagonal matrix

finance: asset pricing, operations management: supply/demand
structural equations, marketing: consumer preferences, economics:

capital structure, firm composition, macroeconomic indicators.

We are interested in the structure of 5!

17



Meat science

This paper has been published in Meat Science 92, 2012, p. 548-553
DOI: 10.1016/j.meatsci.2012.05.0257.

The Use of Seemingly Unrelated Regression (SUR) to Predict the
Carcass Composition of Lambs

V.AP. Cadavez!, A. Henningsen?

Abstract

The aim of this study was to develop and evaluate models for predicting the carcass composition
of lambs. Forty male lambs were slaughtered and their carcasses were cooled for 24 hours. The
subcutaneous fat thickness was measured between the 12th and 13th rib and the total breast bone
tissue thickness was taken in the middle of the second sternebrae. The left side of carcasses was

dissected into five components and the proportions of lean meat (LMP), subcutaneous fat (SFP),

18



Factor selection for asset pricing

The Factor Zoo (Cochrane, 2011) — many possible factors ...

= Market = Dividend initiation
= Size = Carry trade

= Value = Liquidity

= Momentum = Quality minus junk
= Short and long term reversal = Investment

= Betting against = Leverage

= Direct profitability .

19



Example II: Factor selection for asset pricing

Let the return on test assets be R, and the return on factors be F.
R=~F+ € e~ NO,V¥)

Primitives:

1. Loss: L(v, R, F) = —log p(R|F)

2. Complexity: ®(X,v) = A||7vll;-

3. Model: R|F with normal errors and conjugate g-priors and F
via gaussian linear latent factor model.

4. Regret tolerance: Let's consider several 's.

20



Example II: Factor selection for asset pricing

Let the return on test assets be R, and the return on factors be F.
R=~F+ € e~ NO,V¥)

Primitives:

1. Loss: L(v, R, F) = —log p(R|F)

2. Complexity: ®(X,v) = A||7vll;-

3. Model: R|F with normal errors and conjugate g-priors and F
via gaussian linear latent factor model.

4. Regret tolerance: Let's consider several 's.

Data: R: 25 Fama-French portfolios, F: 10 factors from finance literature

Targets: The A = 0 model, i.e.: the fully dense graph

20



p distributions for different sparse graphs
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Factor selection graph, x = 12.5%

R: 25 Fama-French portfolios, F: 10 factors from finance literature

22



Selected graphs under different satisfaction tolerances x

k=325% k=475%




Example lll: Monotonic function estimation

Goal: Describe expected returns with firm characteristics or

accounting measures (size, book-to-market, momentum, ...).

[E[Rit | X/t—l] - f(xitfl)

R;:: excess return of firm / at time t
Xit—1: vector of characteristics of firm / at time t

24



Example lll: Monotonic function estimation

Goal: Describe expected returns with firm characteristics or

accounting measures (size, book-to-market, momentum, ...).

[E[Rit | X/t—l] - f(xitfl)

R;:: excess return of firm / at time t
Xit—1: vector of characteristics of firm / at time t

We would like to learn 1!

24



Portfolio sorts are one way to understand f ...

Jegadeesh and Titman (2001)

Table I
Momentum Portfolio Returns
This table reports the monthly returns for momentum portfolios formed based on past six-month returns and held for six months. P1 is the
equal-weighted portfolio of 10 percent of the stocks with the highest returns over the previous six months, P2 is the equal-weighted portfolio of
the 10 percent of the stocks with the next highest returns, and so on. The “All stocks” sample includes all stocks traded on the NYSE, AMEX,
or Nasdaq excluding stocks priced less than 35 at the beginning of the holding period and stocks in the smallest market cap decile (NYSE size
decile cutoff). The “Small Cap” and “Large Cap” subsamples comprise stocks in the “All Stocks” sample that are smaller and larger than the
median market cap NYSE stock respectively. “EWI” is the returns on the equal-weighted index of stocks in each sample.

Al Stocks Small Cap Large Cap

1965-1998 1965-1989 1990-1998 1965-1998 1965-1989 1990-1998 1965-1998 1965-1989 1990-1988

P1 (Past winners) 185 163 1.69 170 1.69 173 156 152 1.66
P2 139 141 132 145 1.50 133 125 1.24 127
P3 128 130 121 1.37 142 123 112 1.10 118
P4 119 121 113 126 1.34 1.05 110 107 1.20
P5 117 118 112 126 1.33 1.06 105 1.00 118
P6 113 115 1.09 119 126 101 109 105 1.20
P17 111 112 1.08 114 1.20 0.99 1.09 1.04 123
P8 1.05 105 1.03 1.09 117 0.89 1.04 1.00 117
Pa 0.90 0.94 0.77 0.84 0.95 0.54 100 0.96 1.09
P10 (Past losers) 042 0.46 0.30 0.28 0.35 0.08 0.70 0.68 0.78
P1-P10 123 117 138 142 1.34 1.65 0.86 0.85 0.88
¢ statistic 6.46 4.96 471 T4l 5.60 5.74 4.34 355 2.59
EWI 109 110 1.04 113 119 0.98 103 1.00 112

25



Challenges and a solution

= Xj;_1 is multidimensional.

= Even if we had only 12 characteristics and sorted into quintiles
along each dimension, that requires constructing
512 = 244140625 portfolios!

We propose modeling the CEF as an additive quadratic spline
model (with monotonicity constraints and time variation):

K

E[Rit | Xie—1] = ar + ngt(xki,t—l)
k=1

26



Why monotonicity?

Finance theory often tells us that expected returns increase or
decrease in each characteristic. Ex: past high-performing firms
have higher returns than past weak-performing firms, on average.

Using this information is statistically advantageous!

27



Why monotonicity?

Finance data is noisy — any bias aids in more precise estimation.

Jan 1964 - Jan 1978

04 06 08
|

Return
0.2

-0.2 0.0

-0.4
L

momentum
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Expected Return

Estimated functions at January 1978
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monotonicity is enforced by linear constraints on spline coefficients
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Expected Return

How does the function vary over time?

Jan 1978 Jan 2014

0.000 0.005 0.010 0.015 0.020
1
Expected Return

0.000 0.005 0.010 0.015 0.020
1

-0.010
L
-0.010
L

I T T T T 1

I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

momentum momentum

dynamics are modeled by likelihood discounting, McCarthy and Jenson (2016)
30



A model with 36 characteristics - January 1978
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A model with 36 characteristics - January 1978
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Future work

Where to go from here?

= New utility specifications: value-at-risk and simulation based.
Analyzing other properties of the regret distribution.

= New models: multinomial regression and classification models,
nonlinear and nonparametric models.

= New application areas: corporate finance, marketing,

macroeconomics.

Existing papers:

Regret-based selection for sparse dynamic portfolios.
submitted (2017). Thesis ch. 2.

Variable selection in SUR models with random predictors.
Bayesian Analysis (2017). Thesis ch. 3.

Monotonic effects of characteristics on returns.
working paper (2018). Thesis ch. 3.5.

88



Concluding thoughts, and thanks!

= Passive investing, SUR model selection, and monotonic
function estimation approached using new feature selection

technique.

= Utility functions can enforce inferential preferences that

are not prior beliefs.

= Statistical uncertainty should be used as a guide to avoid

overfitting.

34



Extra slides



Treatment effect estimation

Suppose we are trying to estimate the treatment effect of dietary
kale on cholesterol level. But ... we only have observational data.

Yi=fo+aZi+¢€

= Y;is cholesterol level

= Z; is amount of kale eaten.

36



Problem: Gym rats tend to eat more kale!

In other words, exercise is predictive of cholesterol and kale intake!

This leads to omitted variable bias.

Yi=Bo+aZi+e€

Because cov(Zj, €;) # 0 we can write:

Yi=PBo+ali+wZi+§

with cov(Zj, &) = 0, we mis-estimate « as o + w!

37



Solution: “Adjust” for weekly exercise

By controlling for weekly exercise X; in the regression
Yi= Bo+ aZi+ BXi+¢€;
we can “clear out” the confounding.

Conditional on Xj, cov(Zj,¢;) = 0 and we're all set!

But what if X; is a big vector, and we don’t know which
covariates to control for? (Enter sparsity).

38



Regularized treatment effect estimation

Consider the model with no intercept and many covariates X;:
Yi=aZ+X/B+e

We can induce sparsity with a ridge prior on 3 and leaving «
unpenalized. This injects bias into treatment effect estimate:

X\ -1
bias(drigge) = —(272)"1ZTX (xTx + Al — xsz) A8 # 0
where (Z7Z)71Z"X is a p-length vector of coefficients from p
univariate regressions of each X/ on Z and Xz = 2(272)~'27X

are the predicted values from these regressions.

This nonzero bias is referred to regularization-induced

confounding (RIC). 30



A different approach eliminates RIC

Consider the model where a likelihood is included for Z:

Selection equation:  Zj = X/~ + ¢
Response equation: Y, =aZ;+ X,-TB + v;

= Extract propensity from selection equation: 7~ X4

= Augment covariates with propensity Xnew = (Z Z X)

= Ridge estimate with Z and Z unpenalized mitigates RIC

Regularization and confounding in linear regression for treatment effect estimation.

Bayesian Analysis (2017).

40



A different approach eliminates RIC

The bias of the treatment effect becomes:
i A =l
bias(didge) = —{(Z'2) 12 X} (xTx + A, — xsz) A3~ 0

where 7 = (Z 2) and {-}1 corresponds to the top row of the

matrix {-}. {(ZTZ)_lzTX}l are the coefficients on Z in the two

variable regressions of each X; on (Z 2)

Controlling for the propensity of the treatment wipes out
regularization-induced confounding (RIC) in the treatment
effect estimate.

41



Next steps

Selection equation: Z; = X,-T~y + €;
Response equation:  Y;=aZ+ X,-TB + v

= Develop fast empirical Bayes approach to regularize two
equation system.

= Account for clustered observations using block boostrapping.

= Many application in social science, including
micro/macroeconomics and corporate finance.

= RIC still exists even in nonlinear, statistical learning based

models! Why? Because they especially need to be regularized.

Extend this approach to random forests.

42



A dynamic regression model giving moments (., ;)

Ri=(B)TRl +¢i, ei~ N(0,1/90), Bi=Bi1+ws, wi~Ty (0,W),
By | Do~ Ty(my, G), 5| Do~ Ga(np/2,dy/2),
Bi| De—1~ Ty (mi_y, R, Ri= C1/dp,
¢t | De—1 ~ Ga(denl_1/2,8:d,_1/2),

:Z?f = /Lf + v, ve~ N(O, Zf), ,utF = /1';1 +Q: Q¢ ~ N(0, W, ):f),
(16, 5 | Do) ~ NW, ! (mo, Co, o),
(B, = | Deox) ~NWL - (me1, R, Se1),  Re= Ce1/dc

Mt = jtT HtF
F Vs
Y= B:X, B + v,

— Moments are used in the expected loss minimization

— Predictive distribution is used to compute p
43



Formulating as a convex penalized optimization

Define ¥ = LLT.

1
L(w) = —wi+ SwEw+ \|wlly

1
= S ILTw— LAl + A wl;

Now, we can solve the optimization using existing algorithms, such
as lars of Efron et. al. (2004).

44



Example: Gross exposure complexity function

= Let l~?t be a vector of N future asset returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: —log (1 + 22121 M/{ff\)lt<>

2. Complexity: At ||well;

3. Model: DLM for R; parameterized by (fi¢, Z+)
4

. Regret tolerance: Let's consider several k's.



Example: Gross exposure complexity function

= Let l~?t be a vector of N future asset returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: —log (1 + 22121 M/{ff\)lt<>

2. Complexity: At ||well;

3. Model: DLM for R; parameterized by (fi¢, Z+)
4

. Regret tolerance: Let's consider several k's.

Assume the target is fully invested (dense) portfolio.
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Example: Gross exposure complexity function

= Let l~?t be a vector of N future asset returns.
= Let w; be the portfolio weight vector (decision) at time t.

= We use the log cumulative growth rate for our utility.

Primitives:

1. Loss: —log (1 + 22121 Wlfi?f)

2. Complexity: At ||well;

3. Model: DLM for R; parameterized by (fi¢, Z+)
4

. Regret tolerance: Let's consider several k's.

Assume the target is fully invested (dense) portfolio.

Data: Returns on 25 ETFs from 1992-2016.

45



Optimal decisions lined up for a snapshot in time

After optimizing expected loss for 500 \;'s, we compute regret
p(wy,, Wi, Ry) (left axis) and 7y, (right axis).
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Regret-based selection: lllustration

d) : sparse decisions, d* : target decision.
7> = P[p(dy, d*, ¥) < 0]: probability of not regretting A-decision.

@ Tlecision 2

sparse decisions
— target

decision 2

decision 1
decision 1

Density

0.20 0.25

-0.05 0.00 0.05 0.10 0.15

0.4 0.5
Regret (difference in loss)

0.0
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Ex ante SRiaget — SRyecision €volution

— dense portfolio as target

—— SPY as target
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UBS for Monotonic function estimation

The regression model is:

K
Rit = o + Z fkt(in,t—l) +€ir, €ir ~ N(O, 02)
k=1

Insight — with quadratic splines for all fi;, this can be written as a

predictive regression:
Re ~ N (%-1B¢, 0l,,)
where
Xer = [1n, Xea|, Be=[ar By

X1 is matrix of size n; x K(m+2), B, is vector of size K(m + 2).
Therefore, each firm is given a row in X;_1, and each m + 2 block

of B, corresponds to the coefficients on the spline basis for a
particular characteristic, k. 49



UBS for Monotonic function estimation

We can now proceed as Hahn and Carvalho (2015). The loss
function is the negative log density of the regression plus a penalty
function ® with parameter \:. Also, let the “sparsified action” for
the coefficient matrix A;.

. 1 - .
Et(Rh At7 et) — E(Rt - Xt—lAi.“)T(Rf.‘ - Xt—lAt) + (D()\tv At)

After integrating over p(R;, ©;), we obtain:

Lx.(A¢) = th—lAt - Xt—1§tH§ + ®(\, Ar)

50



Modeling Time-dynamics: McCarthy and Jensen (2016)

= Power-weighted likelihoods let information decay over time
= To estimate parameters at time 7, let §; = 0.997 ¢, such that

01 < 9y < ... <4, =1, the likelihood at time 7 € {1, ..., T} is

T

P(Rl, 000 RT‘@T) = H P(Rt‘@r)ét-
t=1

51



Model Summary

K Ot
Re|- ~ N (atl,,t + Z fkt(Xk,t—l)» U?’ﬂ)

k=1
fre(Xi,e—1) = Xit—18ke = Xk -1 L7 L Bhe = Wi vke
o ~ N(0,1072)
o? ~ U(0,10%)
(el ke = 1,0%) ~ N4 (0, ckar?)
(Vikt| lje = 0) = 0
like ~ Bn(pjx = 0.2).
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Data

Freyberger, Neuhierl, and Weber (2017)'s dataset:

= CRSP monthly stock returns for most US traded firms

= 36 characteristics from Compustat and CRSP, including size,

momentum, leverage, etc.

= July 1962 - June 2014

Presence and direction of monotonicity is determined by important

paper in the literature
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