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Experiment and data

Units and treatment assignment

◦ 37,055 total streets (units)

◦ 967 streets are identified as crime “hotspots”

◦ 384 are treated with increased police presence

Outcomes and covariates

◦ Crime counts on all streets (murders, car and motorbike thefts,
personal robberies, assaults)

◦ Survey data on hotspot streets

◦ Characteristics of hotspots (distance from school, bus stop, rec
center, church, neighborhood, ...)
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Questions we aim to answer

How does the intervention affect crime?
→ direct effect?
→ spillovers to adjacent streets?

We will answer these through hypothesis testing.

We would like to be model-free, so we will use the randomization
method of inference.
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A classical test

Define potential outcome of unit i under assignment Z : Yi (Z )
i.e., number of thefts over measurement interval.
Y = vector of observed outcomes.

Assume: Yi (Z ) depends only on Zi (no interference)

H0 : Yi (Zi = 0) = Yi (Zi = 1) for every i .

We can use a Fisher exact test here!
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Fisher exact test (1935)

H0 : Yi (Zi = 0) = Yi (Zi = 1) for every i .

The procedure:

Choose test statistic T = T (y , z) (e.g., difference in means).
1. Tobs = T (Y ,Z ).

2. Sample Z
′ ∼ pr(Z

′
), store Tr = T (Y

′
,Z

′
)
H0= T (Y ,Z

′
).

3. p-value = E [1{Tr ≥ Tobs}].

Proof of validity:

T (Y
′
,Z

′
)
H0= T (Y ,Z

′
)
d
= T (Y ,Z )

“Tobs ∼ Tr (under null)”
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Why is this great?

◦ Fisher test is exact.

◦ No model for Y .

◦ Valid in finite samples.

◦ Robustness since it is a rank test (the same cannot be said for
regression).
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The original assumption ...

Assume: Yi (Z ) depends only on Zi (no interference)
→ not very realistic for our application.

In reality, Yi (Z ) is exposed to (depends on) multiple parts of Z .

New question that assumes interference: Is there a difference
in outcome between short-range and pure control streets?
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Answering this question under interference

Let’s suppose, for a given Z , unit i ’s exposure lives in the set

{short-range, pure control, neither} = {a, b, c} = E .

Unit i ’s exposure function, fi : {0, 1}N → E . Maps Z to exposure.

Now, assume: Yi (Z ) depends only on fi (Z ). We want to test:

H0 : Yi (a) = Yi (b) for every i .

Can we just use a Fisher exact test again?
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Not quite ...

Recall, observed T ∼ randomized T for things to work:

T (Y
′
,Z

′
)�
�A
A
H0=T (Y ,Z

′
)
d
= T (Y ,Z )

The null only assumes 2 of the 3 exposures have equal outcomes

H0 : Yi (a) = Yi (b)
?
= Yi (c) for every i

In this case, the null is not sharp. We cannot impute potential
outcomes Y

′
freely under any Z

′ .
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Existing approaches and our contribution

We need to find units only exposed to a or b under some set of
assignments ... called focal units.

→ make H0 conditionally sharp (so that Y
′ H0= Y )

Aronow 2012, Athey et al. 2017 – Sample focals, enumerate Z
◦ computational challenges

Basse et al. 2018 – Conditioning mechanisms
◦ conditioning difficult to execute
easier when interference has structure
(e.g. two-stage designs).

Our contribution: A constructive, general approach to find focal
units and assignments to make the null sharp.
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Revisiting the null based on exposure functions

H0 : Yi(Z ) = Yi(Z
′) for every i ,Z ,Z ′,

such that fi(Z ), fi(Z ′) ∈ {a, b}.

Yi (Z ) – potential outcome for street i .

Z ,Z
′
– assignment vectors ∈ {0, 1}N .

fi – deterministic exposure function (takes in Z , outputs exposure).

{a, b} – set of possible exposures for units (⊆ range(fi ) = E).
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Testing Yi(a) = Yi(b) ∀i

Given a null hypothesis and assignment from pr(Z ), we know
which units are exposed to either a or b using fi (·).

This is a binary relationship!
How can we visualize?
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Our main contribution: The null exposure graph
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Introducing the null exposure graph
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Notice that {{U2,U3}, {A2,A3}}
is a complete subgraph, also called
a biclique!

Units Assignments



Why are these bicliques useful?

Within a biclique, every unit is exposed to {a, b} under any
assignment.

i.e.: If Zobs is in biclique, we can impute potential outcomes, and
H0 is sharp in the biclique.

Let’s outline the method ...
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Conditional biclique method

→ A null exposure graph uniquely defined given H0.

→ A test statistic T = T (y , z).

1. Decompose: Compute biclique decomposition of null
exposure graph. Pick out biclique with Zobs, call it C .

2. Condition: Compute test statistic values with units and
assignments only in C .

3. Summarize: p-value = EZC
[1{TC ≥ Tobs}].

Here, P(ZC ) ∝ pr(ZC )1{ZC ∈ C}
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Why is this a valid method?

Clique test statistics: TC = T (YC ,ZC )

*T is defined only in C by condition step in method

For every Z ,Z
′
, we need to show T (Y

′
,Z

′
)
d
= T (Y ,Z ) | C

Proof:

T (Y
′
,Z

′
)
∗
= T (Y

′
C ,Z

′
C )

H0= T (YC ,Z
′
C )

d
= T (YC ,ZC )

∗
= T (Y ,Z )
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Considerations

◦ Finding bicliques is hard, actually, NP-hard1

◦ The method is constructive, still needs to be optimized

i.e., different biclique decompositions will have different power
properties, but all are valid!

1We use Binary Inclusion-Maximal Biclustering Algorithm, which uses a
divide and conquer method to find bicliques. 21



Example: Is there a short-range spillover effect?

H0 : Yi(Z ) = Yi(Z
′) for every i ,Z ,Z ′,

such that fi(Z ), fi(Z ′) ∈ {a, b}.

fi (Z ) :=


short-range Zi = 0, disti < 125m
control Zi = 0, disti > 500m
neither else

{a, b} := {short-range, control}
disti := distance to closest treated street.
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Returning to the map
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The observed assignment
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The observed assignment
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Zobs

384 streets are
treated with
increased police
patrolling

Q: Does crime after
treatment differ between
nearby and far away
streets?



Short-range spillover units (exposure “a”)
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Using network
geometry,
color units
exposed to “a”
under Zobs



Pure control units (exposure “b”)
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Using network
geometry,
color units
exposed to “b”
under Zobs



We can remake these pictures for every assignment Z drawn
from pr(Z) ...

→ The output is our null exposure graph!
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Null exposure graph
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and white



Biclique containing the observed assignment
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only navy and
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Where are the focal units?
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A test of the null

32

p-value ∼= 0.07



Concluding thoughts

◦ New method is presented for testing causal effects under
general interference using null exposure graphs and bicliques.

◦ Structure is placed on null hypothesis through exposure
functions.

◦ More interesting work to be done to improve the method and
test interesting hypotheses!
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